
1

Terry Stillone

Software Technology Research
terry@originware.com

>>> See the presenter notes for the slide commentary <<<

I want to ask you to think about how much consideration you give to design, and what type of design constructs or design tools do you use.

I also want to differentiate between "whole design" that covers and supports the whole App as opposed to “partial design” where only a localised area is assigned a
design (such design patterns or MVC/MVVM). These provide only a limited patched design.

BSP is a whole design system, it supports not only the whole software system but the development process as well.

http://originware.com
http://originwat.com
http://originware.com

An introduction to
the BSP Design Model

 BSP as a Methodology
addresses the problem of

behaviour complexity.

 BSP as a Design Model
applies the principle of

Pure Design
to many levels of
the dev process.

A demonstration
of BSP in code form

Live
Demonstration

of the
BSP Demo App

Relevant source
clips of the

open source
BSP Demo App

 BSP tries to address the
whole App model as
opposed to say MVC

which is only
a partial App Model.

Theory Practise

This Presentation Contains …

Of course the live Demo App demonstration is not available for the slide only content, but you can get the Demo App Xcode project source from: https://bitbucket.org/
originware/bspdemoapp/src/master/ compile and run it for yourself.

3

Theory Section 1 / 4

The Problems in Software Development

4

The UI App Software Dev ProblemComplex Behaviour

Complex UI

Design

 Handle

Organise
Manage

Processes

Software
Modules, Subsystems

and their Roles

Modern UI App
construction must …

Provision for

Testability

Package
Dependencies

Services

Online On-Device

Incremental Dev

Software
Project Hierarchies

Implementation

Unit Testing
Cycles

Team
Assignment

Work Assignment

User Testing
and Feedback

Stress

Coverage

Documentation

Continuous
Integration

Testing

The essential problem is one of the management of complexity and complexity in all of the facets that make up modern UI App construction.

Every year, there is a greater expectation on Apps to do more, provide more, integrate with more services (both online and on-device), include more package
dependencies and require more modules to operate the system. This ripples into all the various developmental processes and artefacts to incrementally increase their
own individual complexity.

5

The Need For Design to Manage Complexity and Support the whole Dev Process

The App Evolution-cycle

 Behaviour
Organisation

Incremental
construction
for design
change

Behaviour
Representation

Design
Collaboration

Incremental
Design

Design
Testable Constructs

 Behaviour
Decomposition

Design Change

Implementation ChangeEvolution Step

Ability to engage
workflows for
Unit Testing
and possibly
Automation

Provide separation
contours and boundaries

for work and team
assignment

(2) Implementation-cycle

Testing and Feedback
for implementation

change

(3) Testing-cycle

(1) Design-cycle

So BSP proposes a cyclic iterative approach driven by design. An incremental design-cycle which adds more capability or refines existing capability, that leads to
incremental development (including test-development) of the design change and the cycle is completed with a test-cycle and the process is re-executed.

In order to do that, design must provide facilities to support that whole cycle and these are given in mauve on the left side.

6

Behaviour
Representation
as Interactions

Visualisation
of Design

Decomposition of
High Order Behaviour

Incremental Design
Synthesis

Testable
Design

Use
of Notifiers

Categorisation
of Behaviour

Organisation
of Behaviour

Provides
Provides

Through means of

Provides

Through means ofThrough means of

Through means of

Through means of

Collaboration and
Sharing of Design

Through means of

Provides

Design Constructs

BSP Design

Design

Th
e

BS
P

De
si

gn
 F

ra
m

ew
or

k
Locality

 of Behaviour
within Design

Capabilities

So BSP provides a set of Design Capabilities as given in the centre ring and these are supported through means of Design Constructs given in the outer ring.

7

Theory Section 2 / 4

Behaviour Representation

8

Expressing Behaviour as Interaction
Modelled as Actors and using Notifications

B
eh

av
io

ur
 R

ep
re

se
nt

at
io

n

Notification The Notifier
Is the transport pathway

for Notifications

Emit Notification

The Source Actor

Observe Notification

A Target Actor

Observe Notification

A Target Actor

Notification

Notification

So BSP expresses Behaviour as Interactions and these interactions are modelled as Actors, interacting by means of notifications and the notifications are transported
through pathways called “Notifiers”.

9

Expressing Behaviour as Interaction

The Actor The Notifier

B
eh

av
io

ur
 R

ep
re

se
nt

at
io

n

Defines the
notification

pathway

Receives
Notifications via
input Notifiers

Emits
Notifications via
output Notifiers

Defines the data type
packaged in the

Notification

Notifiers have two varieties:

The Request Notifier - a request to perform something.
The Event Notifier - an indication of an event.

So Actors can receive notifications (i.e. they have inputs) and they can emit notifications (i.e. they have outputs). The Notifier defines the from and to pathway and they
have two varieties, Request (where the notification is a request to do something) and Event (where the Actor has observed some event that it cannot act upon and so
needs to indicate out the event occurrence so that it can be handled externally).

The data type associated with the notifier (i.e. its notifications) is indicative of the Request or Event that is issued.

10

B
SP

 D
es

ig
n

Pr
in

ci
pl

e Is represented by

Is modelled with

Which describes

Which categorises
and highlights the
intrinsic features
of the Behaviour

Interaction

Actors and Notifiers
(producing and

consuming Notifications)

Interactional Topology

Behaviour

In summary, the principle that BSP operates on is: Behaviour is represented as Interaction. Interaction is modelled with Actors and Notifiers and the connective
arrangement forms an “Interactional Topology”.

The Interactional Topology in turn describes boundaries and contours which reflects structure back onto Behaviour which was previously just an amorphous blob. These
contours and boundaries can then be used in project management to separate out work items, team assignments and so forth.

11

Service (Actor Model)
Behaviour (Actor Model)

Presentation (Actor Model)

Basic BSP (Behaviour, Service, Presentation) Interaction Diagram

Observe Notifiers

Emit Notifiers

Emit Notifiers

Observe Notifiers Request
Notifier

Observe Notifiers

Emit Notifiers

Event
Notifier

Request
Notifier

Event
Notifier

Service Event

Presentation Event

Presentation Request

Service Request
Presentation Request

Presentation Event

Service Request

Service Event

This is the basic BSP “Interaction Model”, there are three top level actors, Service (which performs OS Services), Presentation (which controls graphic elements and UI)
and Behaviour.

The Service and Presentation Actors both house their own Service and Event notifiers. The Behaviour Actor has no top level actors, but observes the other Actor Event
notifiers and issues requests to their respective Request notifiers.

The Service and Presentation Actors are thin interfaces to the OS Services/Presentation, so they tend to have short call chains where as Behaviour is the fat workflow
Actor and probably will have sub-Actors within it to handle its workflow complexity.

So Actors perform “Workflow” and Notifiers perform “Activity”. Here activity can be engagement activity (that engages its respective workflow in the target Actor) and
event activity in which an Actor is acknowledging out it has observed an event (typically being issued because it cannot handle the event). Notifiers are to go to point to
instrument for monitoring/testing/automation. Where as, Actors are the go to point to determine what workflow is engaged by activity (e.g. for debugging workflow).

Notifiers decouple activity from workflow and so effectively decouple Actor dependencies. They also provide a natural avenue for testing Actors in isolation or grouped or
together. They provide a “plugin” system that supports reusability (across separate Apps) for service and presentation workflows.

This model may seem simple, but the elegant structure exhibits natural boundaries and contours which provide a rich set of structures which can be used in work
planning, work break-down and team assignment.

12

Roles and Definitions of the BSP Actors

The Behaviour Actor

Be
ha

vi
ou

r R
ep

re
se

nt
at

io
n

The Presentation Actor

The Service Actor

Definition: A thin interface to the Hosted UI

Definition: A thin interface to the Hosted OS

Definition: Imbues the unique Application Behaviour

Includes the Business Logic

Deals In Abstract Application concepts

Deals In Hosted UI objects and concepts

Deals In Hosted OS objects and concepts

Workflow Orchestrates and Coordinates workflow

Hosts The Behavioural State

Hosts The View Models

Here are formal definitions for the three Actors.

Note: the Presentation Actor honours MVC by hosting the view models.

13

Difference Between Orchestration and Coordination

The sequencing of fixed workflow steps
Coordination

The next slide button click example

Orchestration

The synthesis of workflow

Action

Example

Action

Example
The App needs to send emails and text messages
of specialised information. The App must perform
analysis on the textual information to determine to
who (there may be a number of recipients) and how

they are sent the information.

14

Presentation (Actor) Behaviour (Actor)

Presentation
Event Notifier

Presentation
Event

Notifier

Observe the request
to display location

Send request to
Service Actor
to get location

Service (Actor)

Get the
current location

from
Location Services

Service
Request
Notifier

Send request to
Presentation Actor

 to display location result.Presentation
Request Notifier

Presentation
Request
Notifier

Service
Request Notifier

Reply
To

Request

In the View Model:

The “Button click handler” fires
and in response, the

“Requested to display location”
Notification is emitted to the

Behaviour Actor

Simple Example of a BSP Interaction:
Click a button to display the current Location

(1)
(2)

(3)
(4)

(5)

(1b)

(3b)

(4b)

(5b)

This is an interaction diagram example for a hypothetical situation where the view has a Button which when clicked is supposed to present the current location.

First, the View Model click handler for the button fires (on a button press) and the Presentation Actor workflow emits a Presentation Event Notifier event but it does not
issue an event to indicate Button X was clicked, it issues an event related to the intent of the button click, so an event indicating that the Presentation Actor has received
a request to show the location.

That is observed by the Behaviour Actor (that is listening to the Presentation Event Notifier), which begins its coordination workflow of requesting the location from the
Service Actor and then issuing a request to present the resolved location to the Presentation Actor.

15

Theory Section 3 / 4

Behaviour Organisation

16

Be
ha

vi
ou

r O
rg

an
is

at
io

n

Employs: more abstract, wide-ranging concepts.

Orchestrates & Coordinates: workflow.

Employs: only material concepts (i.e. OS & UI service concepts)

Controls: only OS and UI.

 Composite: of Macro and Micro depending on trade-offs.

Cl
os

er

to
 O

S
&

UI

Fu
rth

er
 a

wa
y

fro
m

 O
S

&
UI

Performs: well defined, fine detail work.

Performs: more open ended work and takes on wider roles.

 Strata: of layers from Macro to Micro characteristics.

Macro-Behaviour

Mid-Behaviour

Micro-Behaviour

BSP categorises behaviour into three levels, Macro, Mid and Micro behaviour. Each has different characteristics. Mid behaviour is typically a stratified graduation from
Macro characteristics to Micro.

17

Be
ha

vi
ou

r O
rg

an
is

at
io

n

Mid-Behaviour

Macro-Behaviour

Micro-Behaviour

Is represented in Design
as Interactions

Is represented as
Traditional Subsystems

Is a composite of interactions and
subsystems depending on trade-offs

Cl
os

er
 T

o
O

S
&

UI

Fu
rth

er
 A

w
ay

 F
ro

m

O
S

&
UI

How Behaviour Levels are Represented

For each of these levels a Design system is assigned which matches the characteristics of the level. Macro level having more interactional characteristics is assigned an
Interactional design model. Micro being more instructional in nature, and performing more fined grained, detailed work, it is assigned a traditional Subsystem design.

Mid-Behaviour is typically a strata of interactional layers to subsystem layers.

18

Theory Section 4 / 4

Behaviour Decomposition Into Scopes

19

B
eh

av
io

ur
 D

ec
om

po
si

tio
n

The “Scoping of Behaviour” is a Macro-level Design Pattern

Scopes Exhibit
Cyclic Phases

 1. An initiation cycle phase

2. An operation cycle phase

3. A termination cycle phase

Typically, the initiation cycle is the reverse process of the termination cycle.
In this case, termination is the reverse compliment of the initiation process.

2a. Sub operation

2z. Sub operation

BSP decomposes high order behaviour into what is called “Scopes”. These “Scopes” exhibit a three phase cycle: initiation, termination and in between an operational
phase that may include a number of sub-operations.

20

Be
ha

vi
ou

r D
ec

om
po

si
tio

n

The “Behaviour Scope” is a Macro-level Design Pattern

Examples
of

Scopes

The application scope-cycle

The command scope-cycle

The modal dialog scope-cycle

(1) Construct resources

The login-logout URL session cycle

(2) Operate Application

(3) Destruct resources

(1) Assess command

(2) Perform command

(3) Supply result

(2) Allow modal to be used by user

(3) Dismiss modal

(1) Present modal

(1) Login

(2) Support URL Session

(3) Logout

Here are some typical examples of Scopes, that you should be familiar with. Scopes can be appropriate in application life cycle contexts, executional contexts, graphical
contexts and network session contexts.

In many times, the termination cycle is the reverse process of the initiation cycle.

21

Be
ha

vi
ou

r D
ec

om
po

si
tio

n

Example Behaviour Scope Hierarchy for a Generic Account App

Scopes Form Hierarchies

(Level 2) OS Hosting State Scope (App Backgrounding/Foregrounding)

(Level 1) Hosting Environment Security Validation Scope

(Level 3) Network Portal Connection Scope

(Level 5) Application Account View Scope

(Level 6) Application Transaction View Scope

(Level 6) Application Account Transfer View Scope

In
fra

st
ru

ct
ur

e
 S

co
pe

s
Ap

pl
ic

at
io

n
 S

co
pe

s

(Level 4) Network Portal Session Scope with Login/Logout View

This is an example of a Generic Account App that connects to a portal service and the diagram describes the scopes that support it.

The first scope layers are infrastructural and have minimal view support while the second set are for the Application workflow and have full associated views.

The Hosting environment scope checks for the existence of certificates, keys and the integrity of the host device.

The Network Portal Scope performs discovery on the portal, checks for service availability and then forms a secure encrypted connection.

The Network Portal Session Scope displays the Login/Logout view and allows the user to authorise a valid user portal session.

22

Presentation (Actor Model)Behaviour (Actor Model)

Behaviour Stack Presentation Stack

Stack Scope-Actor
Entry 1 Behaviour
Component Actor

Stack Scope-Actor
Entry 2 Behaviour
Component Actor

Stack Scope-Actor
Entry 1 Presentation

Component Actor

Stack Scope-Actor
Entry 2 Presentation

Component Actor

Issue
Request

Issue
Event

(Initiation)
Stack Push

(Termination)
Stack Pop

Scope Actors Form Co-operative Pairs as: Behaviour + Presentation Actor Pairs

The Behaviour Actor manages
 its own stack (via push/pop)

The Behaviour Stack Sibling manages
 the Presentation stack (via push/pop)

(Initiation)
Stack Push

(Termination)
Stack Pop The Presentation Stack Sibling

generates the current view
to be displayed

Scope are implemented with scope stacks as given in the diagram, there is a Behaviour Scope Actor (that handles the unique behaviour of the scope) and a Presentation
Scope Actor that handles the View set associated with the Scope. The scope companion Actors interact through the Presentation Scope Actor Request and Event
Notifiers.

Note: The Behaviour Scope Actor may need to interact externally and so may need to receive external requests and may require its own request notifier. This depends on
how the Scope Behaviour Actor is engaged, if it needs external engagement or just be event triggered by its companion Presentation Scope Actor.

23
Scenario: Start App

Ex
am

pl
e

A
cc

ou
nt

 A
pp

 S
co

pe

Se
qu

en
ce

 D
ia

gr
am

Here is a sequence diagram for the previous example Generic Account App. It is written by hand to demonstrate how the interaction sequence can be sketched out.
There are three slides in this sequence diagram set, one for the the scenario of App startup, App backgrounding and then App foregrounding.

The sequence diagrams start at the Hosting scope and end on the first Application scope for brevity.

24

A
cc

ou
nt

 A
pp

 S
co

pe

Se
qu

en
ce

 D
ia

gr
am

Scenario:
Background App

This is the sequence for App backgrounding.

Lets say there was a set of requirements placed on the App:

1. To scrub all data (including views) when the App backgrounds, for security reasons.

2. An allowance for the App to perform a one-time quick session re-login on App foregrounding if the portal allows it, based on disconnection duration.

3. The View based scopes must be able to re-navigate back to the original Nav View but do not need to reconstruct all the view-data that was in the original Nav View at

backgrounding time.

So at backgrounding time, the hosting scope issues a suspend request which is propagated down stream. The view based scopes scrub their data (on the suspend
request), record their Nav View position (which they hand back in the notifier result) and they all pop off their scope Actors. The Portal Session Scope also obtains the one
time session key and hands it in the request result to the Hosting scope. The App formally backgrounds on the Hosting scope being active.

25

A
cc

ou
nt

 A
pp

 S
co

pe

Se
qu

en
ce

 D
ia

gr
am

Scenario:
Foreground App

This is the sequence for App re-foregrounding.

The App resumes in the Hosting Scope and the scope issues a resume request with the session key and nav description. The resume request is propagated down
stream.

The App is supposed to try to perform a quick re-login using the stored one-time session key (if the portal allows it) and then go to the recorded Nav View position.

If there is no session key or the portal does not accept the session key, then the Scope progression stops at the Portal Session Scope with the Login/Logout view
presented.

26

Practical Section

27

The BSP Demo App

 The Demo App source is in
Swift 5.5, Swift UI 3 with async/await concurrency

and available on BitBucket.

See the BSP page on the originware.com website
for links to the repo.

The App wiil be used to
demonstrate BSP,

both in
source and live form.

(Level 1) Web URL Facility Scope (commands: display google, search wikipedia)

(Level 0) Graphing Scope (supports commands: get time, get location)

(Level 1) Message Facility Scope (command: message my location)

The BSP Demo App Scope Structure

Note:
This Demo App “Shell” is

used separately in
Originware’s Semantic

Transcription Technology
Demonstration App to

graph Semantics

The Demo App Xcode project source is in: https://bitbucket.org/originware/bspdemoapp/src/master/ you can compile and run it for yourself.

28

Scopes

Service (Actor Model) Behaviour (Actor Model) Presentation (Actor Model)

BSP Demo App Interactional Diagram

Observe Notifiers

Service Event

Presentation Event

Emit Notifiers

Emit Notifiers

Observe Notifiers

Emit Notifiers

Event
Notifier

Request
Notifier

Event
Notifier

Presentation Event

Service Request

Service Event
Presentation Models

• Avatar Animation View Model

• Graph View Model

• Pencil Kit Canvas View Model

• Automation View Model

• Main View Model

Call
Method

Issue
Event

Service Models

• Speech Synth Service

• Location Service

• Reachability Service

• Speech Recognition Service

Issue
Event

Call
Method

Sync Speech
Synth Request

Presentation Request

Presentation Request

Service Request

Models

See the separate Behaviour
Actor Interaction Diagram.

Stack Actors Request
Notifier • WebURL (Presentation)

• MessageLocation (Presentation)

• WebURL (Behaviour)

• MessageLocation (Behaviour)

Observe Notifiers

Event
Notifier

Request
Notifier

Request
Notifier

There are two separate diagrams for the BSP Demo App (see the next slide).

This slide details the internal models of the Service and Presentation Actors. The next slide details the Behaviour Actor.

29

Behaviour (Actor Model)

Observe Notifiers

Presentation Event

Emit Notifiers

Presentation Request

Service Request

BSP Demo App Interactional Diagram (Behaviour Actor only)

Internal Meta Behaviour Model

Observe Notifiers

Issue
Meta

Request

Issue
Meta
Event

Issue
Meta
Event

• Command Behaviour Model

• Avatar Behaviour Model

• Automation Behaviour Model

• Facility Behaviour Model

Issue
External
Request

Sync Speech
Synth Request

Service Event

Call
Method

Call
MethodMeta Request

Meta Event

Sub Behaviour Models

The Behaviour Actor employs an internal “Meta Actor” so that its internal workflow has access to all the capabilities encapsulated within the Behaviour Actor, such as
requesting the Avatar to voice a vocal string.

30

D
em

o
A

pp
 W

eb
U

R
L

Sc
op

e
In

te
ra

ct
io

n
D

ia
gr

am
Fo

r P
re

se
nt

in
g

U
R

L
R

eq
ue

st

Again, another hand version of an Interaction Diagram for presenting URLs with the WebURL scope. This diagram includes both the scope stack push and requesting for
a URL to be presented.

Note: The Behaviour Actor workflow is responsible for pushing the WebURL scope Behaviour Actor onto the Behaviour Stack and then when this scope actor is
activated, it pushes the companion Presentation Scope Actor onto its Presentation Stack.

The WebURL scope only has one request, that is to present a given URL with a progressFunc callback closure to be exercised on the fetch, download and completion
events.

31

Th
e

D
em

o
A

pp
 W

eb
U

R
L

Sc
op

ed
 D

es
ig

n
Fo

r D
is

m
is

sa
l

The hand version of an Interaction Diagram for dismissing the WebURL scope and view.

There are no requests associated with this sequence. This sequence is engaged when the WebURL Scope Behaviour Actor is deactivated by popping it off the behaviour
stack, it in turn deactivates the Presentation Scope Actor and pops it off the presentation stack.

As a side comment, while this WebURL capability was implemented as a scope and it was implemented this way for demonstration purposes, in practical terms, it could
have easily been implemented as an un-scoped facility.

32

The BSP Demo App Live Demonstration Of Scopes

 The BSP Demo App source (Swift 5.6) is available on BitBucket.

See the BSP page on the originware.com website

for links to the BSP Demo App repo.

See: https://bitbucket.org/originware/bspdemoapp/src/master/

33

Sc
op

e
St

ac
k

Im
pl

em
en

ta
tio

n

protocol IScope : IActor
{
 // Indicator that the scope is Active
 var isActive : Bool { get }

 // The view associated with this scope
 // Only valid for presentation scopes.
 var scopeView: eScopeView? { get }

 // Activate the scope.
 func activate()

 // Deactivate the scope.
 func deactivate()
}

public protocol IActor
{
 // URI of the Actor
 var uri : String { get }

 // URIs of resident Notifiers
 var notifierURIs : [String] { get }
}

All Actor
instances are

assigned a URI

activate() constructs the scope resources

deactivate() destructs the scope resources

Scopes are pushed and popped off their
respective stack. A scope-pair has a

behaviour scope instance
and a presentation scope instance.

enum eScopeView : Equatable
{
 case eGraph
 case eMessageView(Views.MessageView)
 case eWebView(Views.WebWithDismissButtonView)
}

Protocols

The presentation scope
generates the view

associated with the scope

Now going onto some of the significant code snippets from the Demo App source.

Actors have an associated URI for identification, such as “/actor/service” and “/actor/presentation”. The IActor protocol also defines the URIs for the associated Actor
notifiers (e.g: “/actor/presentation/notifier/request")

Scopes are Actors, so there is a protocol inheritance on IScope for IActor. Scopes have an activation and deactivation func that are exercised after being pushed onto
stack and just before being popped off. The scopeView property indicates the view associated with the scope. This property is only valid for the Presentation companion
scope.

34

Sc
op

e
St

ac
k

Im
pl

em
en

ta
tio

n

Push and Pop
operations driven by
Scope Stack Notifier

Requests

class ScopeStack : IActor, ObservableObject
{
 enum eRequest
 {
 case ePush(IScope)
 case ePop(String)
 }

 public var top : IScope? { return stack.last }
 public var topIndex : Int { return stack.count }

 public let uri: String
 @Published public var topView = eScopeView.eGraph
 public private(set) var stack = ContiguousArray<IScope>()

 public init(uri: String)
 {
 self.uri = uri
 }

 public func push(scope: IScope)
 {
 stack.append(scope)

 if !scope.isActive { scope.activate() }
 }

 public func pop(uri: String)
 {
 guard let topScope = top, topScope.uri == uri else { return }

 stack.removeLast()

 if topScope.isActive { topScope.deactivate() }
 }
}

The view generated by
the stack top Actor

The Scope Stack

Hers is the ScopeStack with its push and pop methods. These methods are driven by a request stack notifier with the associated request data type:
ScopeStack.eRequest.

The published property “topView” indicates the view to be presented. The “topView” property maps to the ScopeStack “scopeView” property of the current top
presentation scope and so represents the View to be injected into the View hierarchy.

35

Sc
op

e
Vi

ew
 Im

pl
em

en
ta

tio
n

enum eScopeView : Equatable
{
 case eGraph
 case eMessageView(Views.MessageView)
 case eWebView(Views.WebWithDismissButtonView)
}

// Stack Views: Graph (with Pen Canvas), Message and WebKit

ZStack(alignment: .bottomTrailing) {

 switch presentationScopeStack.topView
 {
 case .eGraph:

 <Graph View code>
 <Graph View legend label code>

 case .eMessageView(let messageView):

 <Message View code>
 <Message View legend label code>

 case .eWebView(let webViewWithDismiss):

 <Web View code>
 <Web View legend label code>
 }
}

The Scope View is injected into
View Content by using the

Published topView property
in the

Presentation Scope Stack

Scope View Injection

This is how the presentation scope view is injected into the View hierarchy (through the topView property).

36

W
eb

 S
co

pe
 Im

pl
em

en
ta

tio
n

public struct WebURLScope
{
 public class Behaviour : IScope
 {
 private let m_presentationScope : Presentation
 private let m_notifiers : ActorNotifierDirectory
 private var m_subscribers = Set<AnyCancellable>()

 init(notifierStore: NotifierStore)
 {
 m_notifiers = ActorNotifierDirectory(notifierStore: notifierStore)
 m_presentationScope = Presentation(notifierStore: notifierStore)
 }

 public func activate()
 {
 <activate behaviour code> (see following slides)
 }

 public func deactivate()
 {
 <deactivate behaviour code> (see following slides)
 }
 }

 public class Presentation : IScope, ObservableObject
 {
 public func activate()
 {
 <activate presentation code> (see following slides)
 }

 public func deactivate()
 {
 <deactivate presentation code> (see following slides)
 }
 }
}

This is the WebURL
skeleton code for:

The Behaviour Scope and
The Presentation Scope

WebURL Scope Pair Example

Each scope has an:

func activate() and a
func deactivate()

let webScope = WebURLScope.Behaviour(notifierDirectory: m_notifiers)

await m_notifiers.behaviour.stack.sendAsync(.ePush(webScope))

Here is the code to create the
WebURL behaviour scope and push
 it onto the behaviour scope stack

This is the code skeleton for the WebURL Scope with the Behaviour and Presentation companion scopes and their activate and deactivate funcs.

37

public func activate()
{
 m_notifiers.presentation.stack.send(.ePush(m_presentationScope))

 m_notifiers.behaviour.webURL.request.sinkAsync(receiveValue: { [weak self] (notification) in

 guard let strongSelf = self else { return }

 switch notification.value
 {
 case .ePresentURL(let url, let progressFunc):

 strongSelf.m_notifiers.presentation.webURL.request.send(.ePresentURL(url, progressFunc))
 }

 }).store(in: &m_subscribers)
}

public func deactivate()
{
 m_notifiers.presentation.stack.send(.ePop(m_presentationScope.uri))
}

W
eb

U
R

L
B

eh
av

io
ur

 S
co

pe

The
Behaviour Scope

listens to
notifier requests

and emits
Presentation Scope

notifier requests

The
Behaviour Scope
also manages the

Presentation
Scope Stack

The WebURL Behaviour Scope activate() and deactivate() funcs

Describing the activate func: the WebURL Behaviour Scope on activation, pushes its presentation companion and begins listening for request notifications. When it
observes a ePresentationURL request it forwards it to the companion Presentation Scope.

38

public func activate()
{
 m_notifiers.presentation.webURL.request.sinkAsync(receiveValue: { [weak self] (notification) in

 guard let strongSelf = self else { return }

 switch notification.value
 {
 case .ePresentURL(let url, let progressEventFunc):

 for await webEvent in await strongSelf.m_webViewModel.load(url: url)
 {
 switch webEvent
 {
 case .eFetchingURL(let url): progressEvenFunc(.eOnFetch(url))
 case .eDownloadingURL: progressEvenFunc(.eDownloadingURL(url))
 case .eDownloadProgress(let progress): progressEvenFunc(.eDownloadProgress(progress))
 case .eLoadedURL: progressEvenFunc(.eOnPresent(url))
 case .eError(let error): progressEvenFunc(.eOnError("Alert: \(error.localizedDescription)"))
 }
 }
 }

 }).store(in: &m_subscribers)

 let view = Views.WebWithDismissButtonView(webViewModel: m_webViewModel, notifierDirectory: m_notifiers, webContentHeight: 0)

 scopeView = .eWebView(view)
}

public func deactivate()
{
 scopeView = nil
}

W
eb

U
R

L
Pr

es
en

ta
tio

n
Sc

op
e

WebURL Presentation Scope activate() and deactivate() funcs

Describing the activate func: the WebURL Presentation Scope on activation, listens for request notifications and sets the scopeView property for it to be injected into the
View hierarchy.

When it observes an ePresentationURL request it calls the view-model load func to load, fetch and present the URL content. The load func instruments Apples
SessionURL delegate funcs that denote the various events which are mapped to an AsyncStream event stream and then enumerated in this code and then passed to the
given progressEventFunc. The progressEventFunc comes from the original behaviour Actor code that initiated the WebURL scope. So that Behaviour Actor code gets
those events and issues requests for the events to be voiced.

39

Why Use BSP ?
 Behaviour Representation

Humans have evolved to
recognise and employ

interactions in their world.
So, all that BSP does is model
behaviour in terms of what is

natural to humans.

 The Design Workspace

BSP provides a pure design
space to efficiently work and

evolve design (separately
from code-space).

 Design Collaboration

Provides a visual description of
Behaviour that can be shared

and collaborated with and
incrementally evolved together.

 Testability

BSP is intrinsically testable
through the exercising

of Notifiers.

 Behaviour Organisation

BSP grades behaviour.

 Behaviour Residence

BSP identifies what engages
localised behaviour and in
turn what it engages down

the (notifier) stream
and so, it identifies the
natural placement for

behaviour.

 BSP Provides Contours

BSP highlights boundaries that
can be used to determine work

and team planning and structure.

 BSP Separates Activity From Behaviour

BSP Notifiers are the go to place to observe
activity. Actors on the other hand define the

behaviour to be engaged due to activity.

So BSP is designed for Apps with more complex requirements but it still will provide benefit for simplistic Apps, especially if they are to grow into more complex systems
over future releases. You will probably find it much easier to perform additive capability with BSP. The design system supports you in determining the natural residence
for the individual parts of additive capability.

All that BSP is really doing, is representing Behaviour/Design in a form that is quite natural to you. It is natural to you, because you have been using and sculpting
interactions your whole life. Your socialisation depends on recognising interactions between people and shaping your own interactions to inject into the social fabric.
Even you as a biological system, your body uses signalling-interactions to perform biological processes such as nerve impulses and chemical messaging for metabolic
process control. In fact biological systems came across this “design” problem a long time ago and followed an evolutionary thread of separating design principles into a
three level hierarchy of:

1. Top-level: A neuronal design principle for cognition, assessment, decision making and so forth (I will leave aspects of consciousness out).

2. Mid-level: Interactional signalling for sensory and metabolic control.

3. Bottom-level: Instructional system (encoding into DNA/RNA) for stepped processes such as protein construction, deployment of proteins and so forth.

Computing has chosen to use an instructional design principle (code-languages) and only recently started to employ AI (neuronal design principle) but it still needs to use
interactional for the intermediate space between instruction and AI.

BSP promotes:

 You to prioritise on asking: “What are the interactions going on in this software system ?”,

 rather than first asking what are the components needed to support the system.

	 	 That includes the interactions with the User, the User is typically the originator of the interaction

	 	 and many design systems, for all the benefits they provide, do not recognise or honour that.

I want to also acknowledge that the concept of separating design into “Behaviour-Service-Presentation” may not be totally unique to BSP. There are other similar models
which tend to separate into roles of: “Business Logic-Infrastructure-Presentation”. BSP is more unique in its formalisation and methodology.

40

Email: terry@originware.com

Read the
BSP Documentation

Play with the
BSP Demo App source

build and run the Demo App

For more information on BSP

See the originware.com site

On the topic of the origin of BSP.

BSP is actually a specialisation of Originware’s “Reactive Fabric” technology. It is specialised for Presentation Apps and you may want to read more on Reactive Fabric
(on the Originware site) if your Behaviour Actor is going to be extremely complex. Reactive Fabric is a full stack solution, meaning it is appropriate from Server, to
Application, to App to embedded/SOC platforms.

41

Integrating BSP with DDD

Analysis Model
(With Bounded

Contexts)

Requirements

System Design

Implementation

1. Domain Knowledge

2. Analysis Model

3. Requirements

4. System Design

DDD
Steps

BSP
Integrates into

DDD
Steps 3 and 4

On an end note, I wanted to briefly comment on DDD (Domain Driven Design).

BSP and DDD complement each other symmetrically. DDD puts a great deal of emphasis onto Domain analysis which BSP does not address. But, BSP does
complement DDD quite well in the software design and dev steps 3 and 4. The synthesised Bounded Contexts (from the analysis step) that have interactional
relationships, can be expressed as Actors in the design.

42

BSP Question Time

43

Terry Stillone

Software Technology Research
terry@originware.com

.com

Reactive Fabric

Technologies:
Semantic Transcription

The BSP (Behaviour Service Presentation) Design Model

BSP - Presentation End

