
Author: Terry Stillone (terry@originware.com)

Web: originware.com

Version: 1.2

December 2020

Product Preview

1. Introduction 3
Introduction. .. 3

Products and Broad Features. .. 3

2. Semantic Transcription Technology 4
Products and Broad Features (Cont.) ... 4

3. Semantic and Intent Representation. 5
Semantic and Intent Representation... 5

3. Semantic and Intent Representation. 6
Intent Representation In More Detail. ... 6

3. Semantic and Intent Representation. 7

4. The Semantic Transcription Process. 8
The Operational Design of the Semantic Transcription System................................ 8

5. Response Generation from Semantic/Intent. 9
The Responder Node Tree Architecture.. 9

6. Network Conversational Nodes. 10
Converx Nodes: Example Applications. .. 10

Converx Nodes: Conversational Net-Nodes. .. 10

Current Product Development State. .. 11

Applicable Use Cases. .. 11

8. Additional Information. 12
For Additional Information. .. 12

Appendix A: Benchmarks. 13
Transcription Performance. ... 13

SDK Memory Footprint Metrics. .. 13

SDK Source Code Metrics (in swift code-only, lines of code). 14

Table Of Contents

1. Introduct ion

This document outlines the concepts and capabilities of Originware's "Semantic Transcription
Technology". Here, the term “Semantic Transcription” refers to the derivation of the (intended)
meaning of a given textual (English) sentence. The focal application domains for this technology are
vocal interactional systems which serve domain knowledge, domain capability, disseminate
information and control other devices and systems. The technology is a suited to apps, IOT devices,
instruments, appliances, games, online conversational nodes and edge conversational nodes.

Supported conversational interactions include: interrogatives (questions), imperatives (directives),
affirmations, demands, greetings and interjections. These interactions are represented as a semantic
structure with full fidelity up to the limits conveyed in the textual content. Supported conversational
scenarios include person to system (computer) and system to system .

It is important to point out that while person to system interactional queries generally convey clear
intent, not all sentences are fully coherent and unambiguous. The intent of some sentences may
require interpretation based on social attitudes, traits, customs or subject capabilities.

The transcription process resolves personal pronouns (you, me, I, we, us), mapping them to known
participants but other pronouns (such as for example: him, her, this, that, it, person names, etc) must
be resolved by the application to known personas and entities.

The technology discriminates between (strict linguistic) semantics and (social) intent. “strict
linguistic semantics” honours the grammatical meaning. For example “have you got the time” has a
linguistic semantic of the affirmation: “<affirm> answer do you have the time, <yes or no>”, where as
the associated “social intent” is to “<supply> the time”.

The Semantic Transcription system is separated into two separate products:

Semantx: The core semantic transcription system, includes grammar parsing, semantic
parsing and intent parsing.
Converx: The response framework which includes Responder Node Trees (routing based
strategy for response resolution) and Converx Nodes (conversational network nodes which
communicate conversational text and reply with conversational text).

Here is a list of product features:

Product Feature Description

Semantx Grammar
Support

Custom 40K word dictionary.

Dictionary words tagged by WRI (Word Reference Identifier) which classifies
their POS (Part of speech) and meaning category:

e.g: /Noun/Thing/Animate/Fauna/Pet/(“cat”).

Multiple noun meaning-associations. Nouns can be tagged with multiple
noun WRIs.

Provision for automated editing of tokenized words, to correct speech
recognition mismatches.

Provision for the addition of custom words e.g custom domain specific terms.

Introduction.

Products and Broad Features.

2. Semantic Transcr ipt ion Technology

Products and Broad Features (Cont.)

Product Feature Description

Semantx

(Cont.)

Semantic
Transcription
Support

Semantic representation of conversational interaction is
provided to the application with full linguistic fidelity.

Intent
Transcription
Support

Intent representation of conversational interaction canonicalises
the various ways of framing and expressing something to its
pure intent form. Thus application response logic only has to
case on intent (not on the various ways of expressing that
intent). Intent representation is inherently lossy in fidelity.

Converx Responder
Node Trees.

Use of hierarchal Responder Trees (authored by the client) that
route requests to nodes that handle particular knowledge
domains and topics. This partitions response logic along
knowledge and topic domains and caters for configuration
management of multiple target conversation nodes.

The supplied Responder Trees provide domain support for
persona identity, function description, introduction, status, time,
date, numeric and unit conversion.

Use of responder identities for personalisation of replies.

Application participates in the active resolution (routing) of
requests to resolve a response.

Support for reverse transcription from semantic to text (provides
auto-generation of responses from the parsed intent or
semantic).

Converx
Network Nodes

Edge based solution for routing queries and requests between
network nodes (or network node hierarchies). Allows nodes to
refer queries and requests that cannot be handled locally to
online nodes for resolution and reply back.

Nodes operate as Docker containers under BalenaOS (Linux),
they can be resident on IOT (SOC) devices or hosted cloud
systems.

HTTP Support Support for browser interaction with Converx Nodes and to also
support custom HTTP APIs.

HTTP requests can be passed to the Transcription Engine and
routed through the Responder Node Trees to generate HTML
responses.

Transcription performance is a key product feature, especially when fitted to vocal processing
pipelines. The product performs well within human perceptual response times, see the appendix for
performance benchmarks.

3. Semantic and Intent Representat ion.

1. Transcription provides to the application logic, a representation of the sentence Semantic and
Intent. These constructs are derived from the grammatical parsing of the sentence text. The
grammar parsing itself, recognises the (grammatical) constructs of:

◦ Interrogatives and Affirmations (questions).

◦ Imperatives (demands and directives).

◦ Greetings and Interjections.

◦ Statements.

2. Subjects and Actions are the base constructs that describe the content (of the Semantic and
Intent). Here, Subjects and Actions are broad encompassing representations, for example “the
house on the hill by the old grey oak tree past the stream” is one single Subject and “would quickly
run around” is one single Action.

3. Semantic representation is structured on three levels:
▪ The Framing level, how the sentence is framed (interrogative, directive, affirmation etc).

▪ The Clausal level, (describes the interaction(s) within the framing).

▪ The Content level, (encompasses the Subjects and Actions that participate in the interaction).

4. Clauses to describe the interaction of subjects and actions. Clauses include two variants :
▪ The Subject Clause: describes a subject in its own action: e.g “the ball flew”.

▪ The Directed Clause: describes an actor subject directing an action on an object subject and
optionally directing the object to a target subject. e.g “he threw the ball to the dog”.

▪ The Interrogative Clause describes the event: e.g “when he had thrown the ball to the dog”.

5. Intent representation in fine detai, needs to be custom for the application but on a high level, it
does fall into the categories of:

▪ To-request To request the target persona to respond or perform something.

▪ To-respond To respond to the previous request.

▪ To-state To make a statement to the target persona.

▪ To-greet To greet the target persona.

▪ To-interject To interject.

The category To-request has sub-variants of:

▪ To-provide (provide a textual response) to a given target-persona (of type Subject):

◦ To-identify: Identify based on an interrogative clause (what, who, how etc).

◦ To-supply: Supply information based on a subject clause.

◦ To-affirm: Affirm (yes/no) with respect to the given clause to the given target.

Semantic and Intent Representation.

3. Semantic and Intent Representat ion.

▪ To-perform (to perform an action or to control a subject):

◦ To-trigger: Trigger the given clause-action.

◦ To-apply: Apply a given subject (measure) to a given target subject..

Intent presumably operates on the state of components within the application. So the application
must derive a series of models, that provides an operational pathway from Semantic to Intent to
operability on the Application State.

These models include:

▪ The Application Object State Model(s)

Models the state of operable objects within the application. These are the target objects
to be manipulated by Intent. The application would normally already have these

▪ The Subject Term Model (Optional).

A model of the subjects that relates to the features and states of the Object State Model.
This defines the subject matter “terminology”. (The model also includes a mapping of
Subject to Subject Term).

▪ The Action Term Model (Optional).

A model of the actions that relates to operations that operate on the Object State Model.
This defines the action “terminology”. (The model includes a mapping of Action to
Action Term).

▪ The Intent Op Model:

Amodel of how the Object State Model(s) are operated on by intent. This model will
probably reference the Subject and Action Term Models.

In summary, the pathway from Semantic to Application State change invokes the mappings of:

▪ Semantic Content ⇒ Subject Terms and Action Terms,

▪ Semantic + Terms ⇒ Intent-Op ⇒ Application State change.

The complexity of these models depends on the diversity and extent of the Semantic Expression
and Content matter required to control the application state.

Lets take a simple example, the control of a home lighting system. The lights are designated by
their room and light in room. The Object State Model is thus:

Application Object State Model

struct Lighting { let zones: [Zone] }

Support
struct Zone { let designation : String; let lights : [Light] }

struct Light { let designation : String; let isOn : Bool }

Intent Representation In More Detail.

3. Semantic and Intent Representat ion.

Intent Model

Light
Reference

Model

▪ enum eHouseLightingRef

◦ case eAllZones

◦ case eByZone(zoneName: String, eZoneRef)

▪ enum eZoneRef

◦ case eAllInZone

◦ case eByLightType(lightType: String)

State Model

▪ enum eLightState

◦ case eOn

◦ case eOff

Intent Op
Model

▪ enum eOp

◦ case eSwitchLight(ref: eHouseLightRef, to: eLightState)

◦ case eToggleLight(ref: eHouseLightRef)

Subject Term Model Action Term Model

Term

Model

▪ enum eTerm

◦ case eZone(String)

◦ case eLight(String)

◦ case eOn

◦ case eOff

▪ enum eTerm:

◦ case eSwitch

◦ case eToggle

Term

Mapping
(Not all terms
given here)

▪ Subject(“on”) ⇒ .eOn

▪ Subject(“off”) ⇒ .eOff

▪ Subject(“kitchen”) ⇒ .eZone(“kitchen”)

▪ Subject(“general”) ⇒ .eLight(“general”)

▪ Subject(“accent”) ⇒ .eLight(“accent”)

▪ Action(“turn”) ⇒ .eSwitch

▪ Action(“switch”) ⇒ .eSwitch

▪ Action(“toggle”) ⇒ .eToggle

The Intent models are:

4. The Semantic Transcr ipt ion Process.

Here is an intent example: for the request: “what is the time”, the transcribed intent is:

To<request>/To<identify>:

◦ target persona: Subject(/Noun/Thing//Person/Identified/User)

◦ Interrogative clause: /Interrogative/What,

subjectClause: Action(verb: /Verb/Auxiliary/ToBe/Is),
Subject(/Noun/System/Time/Time, modifiers: [/Determiner/Article/Definite]),

The diagram below depicts the design of the Semantic Transcription system with processing elements
for each individual processing step:

Step 1. The Tokenization and WRI tagging of the sentence text to derive a WRI tagged, word
token-sequence.

Step 2. The canonicalization of the word token-sequence (includes auto correction of speech
recognition mismatches).

Step 3. The parsing of the word token-sequence to a Grammar topic tree. The tree includes
Subjects and Actions within the sentence.

Step 4. The parsing of the Grammar topic tree to a Semantic together with an optional
addressee persona (who the sentence is addressed to).

Step 5. The parsing of the Semantic to Intent. This is optional, depending on whether the
response generation system interprets the Semantic or the Intent or both.

Step 6. The resolution of the Response to the original request derived from the generated
Intent/Semantic. The generated response typically includes vocal reply text and internal actions
to be performed.

The Operational Design of the Semantic Transcription System.

◦

◦

• Parse the received
 token sequence to
 form a grammar topic
 tree with actions and
 subjects.

• Parse the received
 grammar topic
 tree to a strict
 linguistic
 semantic.

• Route the Semantic/
Intent through the
Responder Node Trees
to resolve a response.

Semantic Transcription System

Text
Tokenizer
(Operator)

 Emit Token
 Sequence

Token
Canonicalizer

(Operator)

 Emit Token
 Sequence

Sentence
Grammar

Parser
(Subsystem)

 Emit Grammar

Semantic
Parser

(Operator)

 Emit
 Semantic

Responder

(Operator)

 Emit
 Response

• Parse the semantic
 to form an intent.
 Subject and
 Actions are
 passed through
 but framing is lost.

Intent
Parser

(Operator)

 Emit
 Intent

Map:
 String -> Tokens

Requests:

 • canonicalize (token-sequence)
 • configure (dictionaries)

Map:
 Tokens -> Grammar Tree
Requests:

 • parse(token-sequence)
 • configure (dictionaries)

Map:
 Grammar Tree -> Semantic

Requests:

• parseToSemantic(grammar)

Map:
 Semantic -> Intent
Requests:

• parseToIntent(semantic)

Engage:
 Semantic/Intent -> Response

Requests:

• resolveResponse(semantic/intent)

Input Requests:

 • tokenize (sentence text)
 • configure (dictionaries)

Output Result:

• vocal responses
• actions to perform

• Tokenize sentence
 text.
• Tag tokens by
 WRI using the
 configured
 custom dictionary.

• Correct textual
 errors, commonly

due to speech
recognition

mismatches.

5. Response Generat ion from Semantic/ Intent.

Response generation (from the Semantic/Intent) can be just as complex as the Semantic
Transcription process itself. There are various knowledge and capability domains to cater for. The
Converx product supplies a multi-tree-routing framework to route the semantic/intent to the relevant
handling code. The process of Intent/Semantic to Response mapping comprises of a number of
operational steps, given here:

Step 1. Typically, resolution of Pronouns and named people or personas are performed but
this can be deferred to Step 2.

Step 2. The routing of the Intent/Semantic through the collection of available Responder
Trees to resolve a response that is relevant for the content and topics contained in the Intent/
Semantic. Supplied responder nodes include responder identity, expression of responder
function, status and capability, time and date handling and unit conversion. The application
participates in the determination of which responder nodes and responder trees are employed.

Step 3. If resolution is not satisfied, the request can be routed to other networked responder
systems called Converx Nodes.

Step 4. If resolution is still not satisfied, then a negative response can be auto generated from
the original semantic. This step represents the default fail-over case for requests that the
application does not handle.

Responder nodes respond with one of the following options:
A positive response (that is relevant for the Intent/Semantic)

A negative response (which is not treated as an error).

An error.

Otherwise a nil response.

As a general rule, requests are routed through responder nodes and trees a until positive response
(or a hard error) is observed. Negative responses are collected and then used if no positive response
is given. If no responses were collected at the final routing step then a nil response is given which
equates a “No response” result.
The controlling application also has the option of auto generating negative responses.

The Responder Node Tree Architecture.

Transcription (and response generation) equates to a series of functional transforms:

Input Text ⇒ Grammar ⇒ Semantic ⇒ Intent ⇒ Response
This varies to the typical AI solution which is end-to-end and equates to the monolithic transform of:

Input Text ⇒ Response
Any customisation or modification to this monolithic mapping requires access to the whole AI system.

The Originware Transcription system on the other hand is modular and flexible to cater for varied
project requirements. Customization can be minimal, with the application suppling the mapping:

Intent ⇒ Response
Or it can include deeper participation in the dimensions of multiple personas, multiple knowledge

domains, grammar inclusion (custom word terms), custom corrections (speech recognition
mismatches), direct access to grammar parsing, semantic parsing, intent parsing etc.

6. Network Conversat ional Nodes.

Lets extend our medical instrument example, and go through some more advanced scenarios. Lets
say rather than the instrument having speech recognition capability it acts solely as a ConverxNode
and expects WiFi connectivity to a user device (phone, tablet etc) which runs a specialised app to
control the instrument. So speech recognition is employed on the user device and the device’s internal
ConverxNode routes those textual requests to the instrument. Also, the instrument controller hosts a
small web-server that serves visual HTML pages for the state/operation of the instrument, that can be
displayed on the device app when replying to requests.
The instrument no longer requires physical controls, the user speaks to their device App for operation,
the instrument performs those actions, replies back verbal text that the Apps speech synthesis
vocalises. The instrument also serves web pages, displayed on the user-device App to idicate the
current visual-state/operation of the instrument.
Also, security can be provided so that only authorised devices and users can operate the instrument.
The instrument may be configured to only accept control devices that have been given a pre-registered
authorisation certificate that matches the device ID and user ID. The app on the control device may
only operate after the user has passed appropriate security measures.
If the user experiences problems with the instrument, the ConverxNode app can be used to assist.
The user can address the “Help desk” with a vocal query, which the ConverxNode app routes to the
cloud based “Help desk” ConverxNode. The “Help Desk” ConverxNode in turn, performs triage on the
request. It may route the request to the phone/tablet of a specific person or redirect it to the phone of
the rostered help staff member. That person’s ConverxNode app will inform them and they can
vocalise a simple reply through the app or voice-call the user (with a vocal command to the app) or
handle it personally.
Below is an example use-case matrix that organises Application Domain by Intent. It denotes what
intent could be used for, within the specific Application Domains.
(Note the To<affirmation> Intent is not included in the matrix).

Converx Nodes: Example Applications.

Converx Nodes (as opposed to Responder Nodes) are network agent-nodes that support a
distributed conversational node-network. These Conversational agent-nodes communicate via plain
conversional text (with a small amount of meta-data). The node network-hierarchy forms an edge
system which distributes conversation processing, by assigning specific knowledge domains to
specific net Converx Nodes. Net-route-through capability allows the network to collectively satisfy a
greater scope of textual requests while not needlessly burdening higher level nodes.
Typically, a cloud based Directory node is deployed to route requests between processing Converx
Nodes (and these individual processing nodes handle separate knowledge domains). Thus a local
Converx Node, say on a small IOT device can route out of scope requests to cloud instances for
resolution.
As an example, envision a medical instrument, with an internal dedicated Converx Node, where that
node is only capable of handling verbal requests for the control of the instrument. But additionally, the
node has the capability to net-route more complex queries to a cloud based Directory Node. So
common use verbal commands for the instrument can be satisfied locally (and not overload the cloud
Directory Node) but at the same time, the local node can address out of scope requests to the
Directory Node for a greater, more comprehensive coverage of knowledge and capability.

Converx Nodes: Conversational Net-Nodes.

7. Product Appl icabi l i ty.

Supply

Intent

Perform

Valuate

Identify

Provide

Trigger

Apply

Device
(Instrument,
Appliance

or Toy) Game

App

General
Application Assistive

Setting value.
Sensor value.

Time/Date/Duration.

Visual aid.
Help.
Stats.

Engage Device action

Device Setting value.

Fault.

Setting value
App variable
App quantity.

Who, What, When,
Where Query.

App Setting value.
App variable.

App action.
Menu action.

Information on Subject.
Help.

Setting value
Time/Date/Duration

Who, What,
When, Where

Query

Notifications.
Information on

Subject.
Help.

Perform App action.
Menu action.

Setting value.
Direct information to.

Setting value.
Game feature quantity.

Who, What, When,
Where Query.

Displays.
Information.

Help.
Stats.

Perform game action.
Menu action.

Apply App Setting value.
Set quantity of game feature.

Cloud

Host setting value.
Host feature value.

Information.
Help.

Direct query to.
Direct trigger action to.

Who, What, When,
Where Query.

 Use-Case Matrix:
 Intent x Application Domain

Valuate device setting value.
Valuate device sensor value.

Valuate device Time/Date/Duration.

Example
Meaning

Current Product Development State.

Both Semantx and Converx are currently in beta, migrating from the current version: 0.9 to the
target version: 1.0. The products are written in the Swift 5 language and are operational on the Linux
(ARM), MacOS and iOS platforms with support for both 32bit and 64bit CPU architectures.

The major transitional work from 0.9 to 1.0 is majorly focused on the fine adjustment of the final
Semantic Expression and Intent representations. This is to reduce the amount and type of matching
that the response code must perform to determine the core Intent and also to grade nuances on the
fine detail of the semantic.
• The current Expression representation is a little too general and is to be refined to the multi-

clausal representation given earlier in this document.
• The current “Semantic Pattern” representation is to be migrated to a more generalised Intent

form, stripping the semantic framing. Actions in the Intent are to be further abstracted from their
semantic form by mapping their multi-auxilary-verb composites to tense tagging (e.g I had swum, I
went swimming, I did go swimming, will be mapped to the same action WRI of the verb “swim”
but tagged with their respective tense.

• Increase the gamut of less-used sentence construction/phraseology.
The major feature transitions for 1.0 to 1.1 are:
• Support conversational threads, that is, tracking the To<Request>, and To<Reply> sequencing to

determine which conversations are closed or still active. This includes support for user To<Reply>
intent handling, currently only system To<Reply> intent handling is supported.

• Support multiple grammar solutions (currently only the first resolved grammar solution is used).
• Support for the Apple WatchOS platform.

The long term roadmap is to port a Kotlin implementation and support Android platforms.

Applicable Use Cases.

8. Addit ional Information.

Please see the Originware website: originware.com or email: Terry Stillone: terry@originware.com
for more information and demonstrations of the technology.

There are also other software technologies available from Originware such as Reactive Fabric, a
software design notation and incremental design methodology, please see:

originware.com/reactivefabric.html

(Please see the following Appendix for performance benchmarks)

For Additional Information.

Appendix A: Benchmarks.

Notes:
These performance results derived using a corpus of 5300 questions.

The SDK is single-threaded, only one CPU is being exercised.

CPU Make CPU
Arch

Transcription

Pass Time (ms)

Transcription

Failure Time (ms)

Release Debug Release Debug

Intel Core i7

2.3 Ghz

64 bit

32 KB L1

Min

Av

Max

2ms

7ms

35ms

3ms

15ms

115ms

3ms

65ms

250ms

3ms

200ms

650ms

Apple A10

2.34 GHz

64 bit

64 KB L1

Min

Av

Max

2ms

15ms

55ms

3ms

20ms

90ms

20ms

70ms

135ms

60ms

120ms

290ms

Raspberry Pi
3 Broadcom
ARM Cortex
A53

1.2 Ghz

32 bit

32 KB L1

Min

Av

Max

15ms

50ms

215ms

20ms

75ms

530ms

220ms

400ms

1110ms

450ms

870ms

2300ms

Transcription Performance.

SDK Memory Footprint Metrics.

OS Code Release Memory Footprint

Linux Standalone Semantx operation.

(Library: libSemantx.a)

Text size: < 7Mb

Data + BSS: ~300KB

Linux Standalone Semantx & Converx operation.

(Libraries : libSemantx.a + libConverx. +
NIO)

Text size: < 10Mb

Data + BSS: ~500KB

Linux Converx Node application incorporating
libraries: Semantx, Converx and NIO

Text size: < 12MB
Data + BSS: < 600KB
Swift support libraries: ~15MB
Resident Memory Size: ~45MB

Appendix B - Source Code Metr ics.

Library Section Swift LOC

Semantx Functional SDK 35K

Initialization code 10K

Converx Functional SDK 10K

Example Responder Nodes 8K

Dictionary Lemma/Word Count

Noun Lemmas 19.2 K

Verb Lemmas 4.5 K

Adverbal Words 1.6 K

Adjectival Words 7.3 K

Conjunctional Words 68

Prepositional Words 109

Total Lemmas + Words 32.8 K

Projected Word Count,

by expanding lemmas

61 K

Custom Dictionary (Metrics for Version 0.9)

SDK Source Code Metrics (in swift code-only, lines of code).SDK Source Code Metrics (in swift code-only, lines of code).

