
Author: Terry Stillone (terry@originware.com)

Web: originware.com

Version: 1.0

October 2019 Product White Paper

"Language is not simply a reporting device for experience

but a defining framework for it."

"A change in language can transform our appreciation of the cosmos"
Benjamin Whorf, American Linguist 1897 - 1941

White Paper Part 3/3 - Formalisation of The Technology

SDK For iOS, OSX (and coming for Linux)

mailto:terry@originware.com
https://www.originware.com

 2. Core Technology Concepts

 3. The Design Methodology

3

4

5 - 11

16 - 17

Title Page

 More Information 27

Discussion on the content of this document and
introduction to the core technology concepts.

Focus on the System Variance concept and the
application of Element scoping.

Outlines the steps involved in synthesizing Designs.
Direct examples provided to demonstrate the design
methodology.

Focus on the SDK architecture of Elements, Notifications
and Evaluation Queues.

Description

Document links for the White Paper, Reactive Fabric
Technology and the Originware site. Includes contact
email links.

 7. Fabric Topologies 18Outlines various Fabric topological types.

 5. Test & Simulation Design 13 - 15Focus on the design of Test and Simulation rigs.

 1. Introduction

 6. Reactive Fabric Architecture

 4. Aspects of Design 12Focus on the various considerations that come into play
during the Design process.

 8. Mathematical Notation
 For Element Interactions.

19Outlines the mathematical notation for Notification Spaces
and the mapping between these spaces that represent
Element interactions.

 9. Scalability And Performance 20Focus on performance analysis, bottleneck localisation
and mitigation options.

 10. Code Samples 21 - 24Code examples of a collection of operators that
demonstrate element handling of both data and control
notifications.

 11. Technology Side Aspects 25Focus on hybrid Reactive Fabric systems and future
possible uses of the technology.

 Appendix 1.
 Reactive Fabric History and Origins

26Focus on the pre-technologies and concepts that
Reactive Fabric originates from.

Table Of Contents

In this section (Part 3), we go into the technical formalisation of Reactive Fabric Technology. If you
have not read Part 2 as yet, you need to at least read the Reactive Fabric Element Patterns (section
3) of Part 2 before continuing here.
In summary, this content now goes on to the more technical aspects of system design by modelling
examples of real world systems. We follow through the steps of the design methodology, discuss the
architecture of the Reactive Fabric SDK and finish with some operator code examples.
While reading this document, please keep in mind that the material given here is quite dense and
complex. The content covered in this White Paper is more worthy of fitting into a book and so there is a
good deal of summarization. Examples are heavily used in this document to ground the given concepts
and subjects. You may need to give your self a few separate reading sessions, not only to read this
content, but to also integrate and appreciate the possibilities that the technology opens up.

Reactive Fabric operates on the "Design for Interaction" principle. It models interaction as the
passing of Notifications between Elements (i.e. processing nodes) along assigned transport
pathways. System behaviour (also termed "System Process") is therefore represented as the
propagation of Notifications through the network (termed Fabric) of transport paths.

System Process has both Structural and Temporal aspects. Here,

Structural refers to "what is done" and
Temporal refers to "when it is done" or "the cycles it follows" 1.

The topology of the Fabric reflects the Structural nature of the Design. It reflects the inputs and the
outputs of the system and what is performed in between. Separately, the Scopes in the Design are
used to reflect the cycles and states of the system and so reflect Temporal aspects (note: Scopes are
defined in the next section).

Transport pathways can support simple one-way messaging (between Elements) or more complex
two-way interactions. Their directional nature contributes another layer of characteristic to the Fabric
topology.

Reactive Fabric as a technology is multifaceted, not only is it a visual depiction of a Software System,
it is also a development methodology. It incorporates design directly into the development process. It
transforms design into an incremental process and synchronizes design cycles together with
implementation cycles (which implies synchronization with test cycles as well).

The object of the technology is to decompose complex systems (including system-swarms) into simple
interaction-designs and so it provides methods of analysis of system behaviour and decomposition. It
also breaks down designs into manageable units by differentiating levels of behaviour (termed LOB):

• Macro level-behaviour designs depict high-level system management and orchestration.
• Mid level-behaviour designs reflect middle management, providing Macro designs with an

interface to subsystems and bring an organisation to collective Micro-level behaviour. Mid
designs also provide the pathways for funnelling and routing of the input and outputs of Micro-
level behaviour.

• Micro-level behaviour designs define more of the specific fine detail processing behaviour.

1 Cycles have both structural and temporal aspects.

1. Introduct ion

 1. Introduction to Part 3 of the White Paper.

 2. Introduction to Core Technology Concepts.

Introducing the concept of the System Variance:
a System Variance is an intrinsic feature of a system that fundamentally varies

the behaviour of the system and as such, it acts as a "System Parameter".
An important point to note here is that a Variance fundamentally changes system behaviour. So for
example, a switch in a home entertainment system that changes the audio output between radio
channels is not an implicit Variance but a switch that changes the output between the radio, music,
TV, etc is, because it acts on the system to operate in a very differently way (and also operate with
very different user controls). Variances express temporal system process discontinuities (which may
also inflict structural changes to support those temporal qualities).
Variances may have constraints, they can be operative over a particular phase of the full system life
cycle, such as at configuration time (these are termed: Configuration Variances), they can be
operable over the operational cycle (Operational Variances) and they can be confined to particular
subsystems rather than the whole system (termed: Subsystem Variances).
As a more specific example of a Variance, lets take look at
the states of a TCP/IP Network Interface.
The interface has operational states of:

⚛

(i) Not Connected.

⚛

(ii) Connecting/Disconnecting (to/from IP address).

⚛

(iii) Connected to an IP address.

These connection states form the intrinsic "State Space"
of the interface-subsystem and constitutes a Subsystem
Operational Variance. The subsystem behaviour must
differentiate between the given Variance states in order to
perform appropriately, e.g. a send request to the Network
Interface in the connected-state operates differently to a
send request in the not-connected-state.
Rather than introduce distinct elements to handle the all
the individual variance-states, Reactive Fabric applies the
design concept of a "Scope". The Scope models the
impact of the Variance on the associated Element. The
element is modelled with the Variance state-space and it
becomes part of its operational state.
Following through with the Network Interface example,
this element has an operational state transition set of:

(i) ⇔ (ii) ⇔ (iii)
which functionally equates to a stack push and pop
pattern. So the Scoping mechanism within the element is
implemented (in code) as a stack of Element-handlers
and on initiation the Element operates with an Element-
handler corresponding to state (i). On reception of a
connection request, it pushes the Element-handler for
state (ii), which engages connection negotiation. On
connection establishment the (iii) Element-handler is
pushed to provide connection behaviour. The reverse
action is performed during the disconnection scenario.
All this element-behaviour is modelled in the design and
sequence diagram to the right:

2. Core Technology Concepts

 1. The Concept of System Variances.

Let's clarify our design process objectives, the goal is to produce formal, implementable designs.
Towards that goal, a number of intermediate designs are authored. The first set is Conceptual in
nature which are then migrated to Practical (which are applied for use). Conceptual designs are used
as a guide to decompose the system into element quanta and from that, determine team(s) to work on
specific design sections. Group meetings generally work on Macro designs while individual teams work
on specific Mid and Micro designs. Group meetings are also responsible for the back-integration of
team Mid to Micro designs together with younger group Macro level designs.
A design of course starts from a blank slate. It first precipitates as a simple, raw Macro, Operational
design, probably drawn on paper, which then undergoes iterative evolution. It is refined until some level
of group consensus is reached as to its adequacy. This design becomes the first tagged "Conceptual
Operational Design".

Formal designs are tagged with their type and iteration, for example the first formal design is
normally: Conceptual Macro-Operational Design Iteration 1 which normally leads onto the
Practical Macro-Operational Design Iteration 1 version.

The first project Design will probably focus only on the Operational design aspect. This is really just
one facet of the whole system design set. The more complete design set includes:

⚛

 The System Life Cycle design: addresses the cycles of construction and destruction.

⚛

 The System Operational design: addresses the business logic and target behaviour.

⚛

 The Error/Failure/Failover design: addresses robustness and handling failure cases.

⚛

 The Performance design.

While the design space is generally overflowing with virtual possibilities, there are some fixed points
that need to be identified before beginning design. These include:

• Synthesizing system inputs, outputs and IO ports.
• Synthesizing the processing required for post-processing inputs and pre-processing outputs.
• The processing requirements for IO ports, such as API handling, security, encryption etc.
• Synthesizing OS Service dependencies, such as Presentation, Location, Audio, Video, etc and the
processing requirements for employing these services.

• Identification of abstractions such as View Models, Data Store Models, etc.

In the first step of authoring of the Conceptual Design. We ask the questions:
• Who or what initiates system interaction?
• What are the Use Cases that are engaged by that initiator?

Let's use an example, a hypothetical mobile App that manages Job Tickets through some web portal.
The App communicates with the net portal for Job Ticket information and is to:

• Display the users submitted Job Tickets. This is the default display.

• Create new Job Tickets, in a popover display.

• Rescind existing user Job Tickets, by selecting jobs in the default display.

Note

3.The Design Methodology

 2. The Various Design Sets.

 3. Initiating Operational Design.

 1. Design Objectives.

Here is a first draft of the capture of the Apps core business use cases with the User as the initiator:

We did not capture the user authentication use-case in this initial draft, it should have been
recognized but the group got caught up in side issues during the meeting. In this scenario,
unresolved aspects would then be addressed in followup design meetings and later incorporated
into design. The point here is that the design process is self supporting and provides flexibility to
cover situations that arise during development.

From this point in our design process, we add concerns for the operational supervision of the whole
system and we consolidate the separate use cases given above into a common design to arrive at the
first draft Operational Conceptual design, given here:

Authored designs are normally supported with an additional interaction diagram to add more
process context, for brevity it is not given here in this example.

Note

Note

3.The Design Methodology (Cont.)

 Step 1: Author a first Draft Macro Conceptual Design.

Lets assess the elements in our newly authored design for complexity and internal structure:
• The Supervisor mediates between the Presentation subsystem and the Request Broker. Much

of its work is merely passing over notifications, so it is quite simple.
• The Request Broker and Ticket Validator are simple enough and will probably end up being

single elements in themselves.
• The Portal Service is complex and will require sub-elements to handle API, HTTP session

protocol and possibly TCP/IP connectivity depending on OS support. So this subsystem will
most likely comprise of two to three elements.

• The Presentation element is a pivotal subsystem in the whole design. In terms of its element
count it comes down to good or bad design.

Returning to the design process, teams are now assigned to work on the individual Mid-level designs.
Here is the assignment:

(Team 1) The Presentation System & Ticket Validator subsystem.
(Team 2) The Portal Service subsystem.
(Team 3) The Request Broker & Supervisor subsystem.

Each team now goes on to develop the Mid-level designs for their respective subsystems. We will
concentrate (only) on the Presentation sub-system in this document but I will mention that the Portal
Subsystem ends up being a pipeline of an API (Socket element) going to a HTTP Session (Service
element).
The Presentation system once assessed, (in Mid-design level terms) is replaced by a more detailed
View Model Service that includes scoping for each of the views to be presented. Here it is:

This new design also implies alterations to the original Macro design. First, the Ticket Validator
element is to go and validation will now be integrated into the Create Job Ticket View scope logic.
Second, the Presentation element was previously a Socket and new the replacement View Model
is now a Service, driven by the Supervisor, which implies flow-on changes to the Supervisor
character (i.e. it now becomes a Controller element). Finally, User interaction becomes implied, that
is not direct as the OS Presentation system now handles user input internally within the View Model
Service element itself. This is depicted in the design with a dotted pathway.

3.The Design Methodology (Cont.)

 Step 1: Author a first Draft Macro Conceptual Design (Cont).

 Step 2: Produce Mid-level Conceptual Designs.

The next design-process objective is the back-integration of the new Mid level designs with the original
Macro design to form the first formal Macro conceptual design (to be tagged as Conceptual Macro-
Operational-Design Iteration 1). The design meeting group convenes to undertake this and applies the
knowledge gained and impacts formulated from the work on the Mid level designs. As a consequence of
the View Model Service being scoped, it is decided to sympathize the Supervisor with the
Operational scopes of:

⚛

 The Login Scope (which will direct the Login view to be presented).

⚛

 The Connected Scope (which will direct the Job Tickets view to be presented).

⚛

 The Create Job Ticket Scope (which will direct the Job Ticket Entry view to be presented).

The Supervisor element is also changed to a Controller pattern so that it directly manages the View
Model and the Portal Services.
The final Macro Conceptual design version is given here:

While altering element pattern types (such as with the Supervisor here) may appear subtle at
this phase, it alters causal initiation and that has deeper implications later on.

Drawing from the Conceptual design, the design team moves to derive the first Practical design.
Where Conceptual design prioritises on the pure functional aspects of the system, Practical design
focuses on incremental design and the design-implementation-test cycle. So the Practical design,
draws from the Conceptual design but only incorporates what is to be implemented in the current
iteration.
For our scenario, Practical Iteration 1 only facilitates capability for login and logout in its design (i.e.
scopes related to login and logout). Correspondingly, the Portal Service will only supply enough
capability to connect, authenticate users, disconnect and log-out.
The remaining capabilities such as the Ticket Display (Connected/Job Tickets View scopes) will be
introduced in Practical Iteration 2 and the ticket Creation and Deletion in Practical Iteration 3.

Note

3.The Design Methodology (Cont.)

 Step 3: Integrate Mid and Macro Designs to Form Conceptual Macro Design (Iteration 1).

 Step 4: The Practical Macro-Operational Design (Iteration 1).

The designs we have produced up to this point have only addressed Operational design. At some
milestone, Failure design and system Lifecycle design must be also addressed. When they are
actually considered, depends on project priorities. If the system has a high security/reliability priority
then they will probably discussed early in the project cycle. For situations that have a user feedback
priority and need to get a system up and running as soon as possible, it may be delayed to after the
basic system is implemented.
Systems that require intensive computation and verge on performance concerns may need to
institute a project Performance Design iteration cycle.

Lifecycle Design in general, addresses the environment that the Operational Design operates
within. It focuses on concerns related to:

• Boot-up security and environmental integrity checking.
• Hosting process modes (e.g. foregrounding and backgrounding modes, containers etc).
• Assessing availability of OS services to fully support the system.
• Initiation and finalisation of OS Services such as the Presentation system, Camera system etc.
• Construction and destruction of the Fabric, i.e. the Operational Design elements.
• Deployment of the Fabric.

Below is the Lifecycle Design for our Job Ticket App. The design handles Fabric construction /
destruction, bringing the Operational Design up / down and managing OS Process states. In the
design, the OS Application Manager (in class form or code) drives the whole System and its
associated process states (i.e. App foregrounding (activation) and backgrounding (deactivation)).

From this design, the internal process for bringing the App up is now:
• The OS Application Manager emits a Start Application notification to the Hosting Process

Supervisor Socket.
• The Hosting Process Supervisor then auto pushes its various scopes in sequence, performing

the appropriate actions for their respective scopes until it gets to the Process Active level and
then emits a push App Active scope notification to the Operational Supervisor element.

• The Operational Supervisor in turn, initiates our previously given Operational Design, which
engages the actual Job Ticket App behaviour.

3.The Design Methodology (Cont.)

 3. Additional Design Cycles.

 4. Lifecycle Design.

Here is a sequence diagram to detail the interactions for the Lifecycle design:

Summarizing this Lifecycle Design, there are a number of temporal cycles incorporated into element
scopes, these being:

• (i) The Start and Stop cycle.
• (ii) The Operational Fabric construction and destruction cycle.
• (iii) The App Foreground and Background cycle.

The Hosting Process Supervisor observes all these cycles and the Operational Supervisor in
sympathetic synchronization, observes cycle sets (ii) and (iii).

3.The Design Methodology (Cont.)

 4. Lifecycle Design (Cont).

Lets reflect back on this whole design set and note some of the key points that came out of the design
process:

• The Lifecycle Design exhibits scope symmetry in its progression of from-initiation and to-
finalisation. As a general rule, if structure exhibits symmetry then it is assumed that in turn,
process will also reflect that symmetry.

• Synchronisation of Scopes between elements is another key design principle as it imbues to the
system with a symphony of complex macro behaviour through the engagement of simple actions.

• Balance is an important design aspect, each scope in the lifecycle design is fairly simple (in their
responsibility/behaviour) and that behaviour is reasonably balanced between elements and
scopes.

• Handling system complexity at the design level is more fluid to work with, rather than at the code
level.

• Generally, locating where behaviour would be naturally expressed is probably the ultimate
determiner of a good design. This goes in hand with acknowledging the scope and dimensions of
behaviour, determining its structural scope (local, subsystem, system) and its temporal scope
(specific lifecycle, operational and full system lifecycle).

• Through the acknowledgment of the dependants of the behaviour (both upstream and
downstream), the natural character of the behaviour becomes more evident. Relevant questions in
the process include "what controls" this behaviour and "what uses" the products of this behaviour.
These design principles project onto cleaner code with distinct responsibilities and boundaries.

• Scopes will tend to reflect the natural cycles of the system and these become obvious process
contour-boundaries for segregation of practical design versions and implementations. This is an
example of the inherent power of Reactive Fabric, to draw out natural process contours (i.e.
discontinuities) which then appropriately flow onto the design and impact the development process
so as to have the development process also reflect those natural contours.

• Practical designs are derived from their Conceptual counterparts. That does not mean that when it
comes time to author a particular Practical design it should strictly follow the Conceptual ancestor.
First there may have been insights gained between the two authorings that require alterations to the
Conceptual version and second the Practical may need to deviate from the Conceptual. It may
possibly co-align in later versions and it may not.

At this point you may be arguing that this scheme is really a pseudo type of "incremental design" and you
are probably correct. Producing a full Concepual design ahead of Practical designs is not pure
incremental design. What Conceptual designs are there for, is to gain forward knowledge rather than
at the cost of learning it later and necessitating major re-design. Conceptual designs also size the
project and indicate resource requirements. But, the designer should also recognize their limitations,
while Conceptual designs provide a good indication of Structural design issues they may not give an
adequate description of Temporal issues. Keep in mind, there is no single design solution. There are a
set of solutions with some fitting better for the project, product requirements and team expertise. The
Design Space is a canvas upon which designers actively explore evolving possibilities.

Reactive Fabric works by operating on simple and natural principles. This approach can appear to be
naive or even whimsical with respect to real world systems. If you are developing on the principle of
"designing for code" (and not "pure design") you are probably not realising, pure simple ways of doing
things and introducing artificial complexities and boundaries. These aspects of simplicity and naturalness
(of expression) also drives the inherent power obtained in the use of Reactive Fabric. This may not be
immediately apparent and require direct experience with incremental design cycles to fully appreciate the
value.

3.The Design Methodology (Cont.)

 6. Appreciation Of Pure Design.

Design is a complex and confusing process. There are many aspects and considerations to collect,
assess, draw relationships with and integrate when designing. Each project is also unique in its
priorities, constraints and complexities. The core of these dimensional aspects include:

• System behavioural complexity and how to decompose that complexity.
• Dependencies (attached/peer devices, third party libraries, OS dependencies).
• Requirements: Plug-ability, Configurability, Adaptability and Robustness (under changing

conditions).
• Product quality assurance: Testability and Simulation-ability.
• Product future: Maintainability and Extendability for future evolution.
• Constraints (e.g. performance, memory foot print (for restrictive IOT systems), developmental

personnel and resources).
Designs need to balance the various project aspects in order to provide the best design fit. That relies
on on-going conversation with context to priorities and trade-offs. Reactive Fabric provides some
support with its ability to breakdown designs through:

• Incremental design cycles (and handle high priority concerns first).
• Behaviour levels: Macro/Mid/Micro (and decide which levels are actually relevant for the project

and which of those levels are to address what concerns).

There also some general design guidelines that may assist:
• Identify natural structural and temporal boundaries: an authentic design will reflect the

structural and temporal boundaries of the real system. If two system facets are independent,
then in the design they will not be connected and probably topologically distant. If two facets are
related or dependant, that type of relationship (structural and temporal) should be reflected in
their design notification pathways.

• Identify System Variances.
• Respect symmetries and asymmetries: scope structural symmetries should be reflected in

their process (in how they behave and how they are driven).
• Balance designs: so that the various behaviour levels equally share the complexity.
• Only give elements state if absolutely required: functional behaviour is preferential. Element

operation equates to a function mapping from their reception Notification space to their
emission Notification space. There are cases where the mapping is dependant on the element
state/history, for example an Element that is aggregating its received notifications it must store
the aggregation result over its lifecycle. Sockets with bi-way interactions will either perform
pass-through of replies (and be stateless with respect to replies) or will alter their behaviour in
response to replies (and so be stateful). Also keep in mind, Element state does incur additional
testing overhead.

• Scoping inherently imparts state to elements.
• Use pathways for their direct intended purpose: There can be design pressure to use a

notification pathway for what it is not really mean't for, because it appears to be expedient at the
time. Over role-use of a pathway confuses actual dependencies from their idealisation. That
does not mean it should not be undertaken, but it should be assessed for alternate options.

• Assess pathways with high load: Pathways generally support both design control
notifications and design data notifications. Control notifications should be designed to have a
low frequency impact that is, to be low use high-level commands. If data notifications have an
expectation of high load/frequency then, there are many options for design mitigation, please
see: Section 9: Scalability and Performance.

4. The Aspects of Design

 1. The Dimensions of Design.

Reactive Fabric is a natural environment to perform unit testing, system testing and simulation as
these systems in themselves constitute interactions characterised by:

Controller ⇔ Test Element

More support is of course required as the controller does additionally need test data for the test runs
and supervision to handle test cycle result aggregation. So a test rig is required and the general
design for the rig looks like:

In this design, the Test Supervisor manages the whole testing process while the Test Cycle
Controller is only responsible for a single test cycle. The Test Supervisor fetches the relevant test
data, expected test results and test scenarios and then feeds these to the Test Cycle Controller.
The Test Cycle Controller in turn feeds test notifications to the target Element, compares replies
with expected results and replies back with the cycle result. (If the test Element is a single-way
notification type, then an Element wrapper is required to feed input notifications and collect emitted
notifications).
The first choice for test-data is to generate it and also generate the expected results. Test-data can
also be captured from the actual system. This is handy when Element behaviour is time dependant
and the test results are time sensitive. This leads onto simulation scenarios and discussed in the next
section.
The test target can take a number of forms:

• a single Element or Subsystem Element.
• an Element Expression .
• a Whole System with minimal separate inputs and outputs.
• a System Swarm.
• a modelled Network.

Testing is an offline approach to checking Element conformance. There are also inline (i.e. in-
Element) approaches can also be employed. These perform checks within the Element itself
for: reception and emission notification conformance, notification bandwidth conformance, etc.
These Element checks can be conditionally compiled in, or virtually hosted by the Element.

Note

5.Test ing and Simulat ion Design

 1. Designing Test Rigs.

The first step in simulating or testing with recorded data is to setup the target system to record both
input and output notifications. Lets take a generic example of a Reactive Fabric expression:

The Inputs and Outputs Elements that comprise the boundary of the Fabric become the prime
targets for recording realtime Notifications. They also will be subsequently used to replay the recorded
notifications. The capture-inputs must be made configurable, so to be switched between real input and
playing pre-recorded input.

There are many possible switching designs but for here we will center on a Virtual Element Design as
it again preserves the native topology of the target system design. To allow recording and monitoring,
the Source and Collector must be made configurable, taking on a Configuration and Active scope
state-space. A Configuration Controller element is added, which houses the all the Acting Source
Elements(s) and Acting Collector Element(s) for the complete set of target scenarios. The capture-
enabled design now becomes:

In this design: the Configuration Controller emits the designated active Elements in a Configure
Notification while the system is in the Configuration scope. Those target Elements then capture their
respective Acting Elements, to engage and then employ them during the Active scope cycle.
So, during operation the Fabric is first configured for the target environment, for a production
scenario, it is configured with production active Elements and for a capture scenario it is configured
with capturing active Elements.
The Acting Source Element set comprises of:

• The native Source Element, which processes real input.
• The recording Source, which could be a unique element, the Source with internal switching to

record or a combination of the native Source composed with a recorder Operator.
• The Player Source Element, which takes input from the recorded notifications.

The Collector elements (which are to record resultant notifications) are handled in a similar fashion.
They become Virtual Elements and are configured with their acting collector behaviour depending on
the scenario.

5. Test ing and Simulat ion Design (Cont.)

 2. Collecting Simulation Data From a System.

Here is the sequence diagram for our capture-enabled virtual element design:

Recording and archiving input notifications can have enormous benefits for testing but that data may
have a limited lifetime and become invalid over implementation cycles that alter basic system
behaviour. So it is important to be able to automate the recording procedure so that recorded products
can be easily refreshed.
Test Data notifications can also be procedurally generated, passed to Test Cycle Controllers and then
used to stress test implementations. This is the initial choice of Testing design. Test Cycle
Controllers can also be directed to randomly perturb notification timing so as to weed out race
conditions. Reactive Fabric's own synchronization model (discussed on the next page) generally
ensures synchronisation integrity but there are cases where elements in an expression are running in
multiple and varied threads. A good example of this is a join or zip element sourcing from a number of
independent sources. Reactive Fabric has a element thread hand over mechanism for these cases,
that if observed will not have issues but if omitted, can appear to work while being a vulnerable future
failure point. If reliability is critical, then stress and race condition testing should be observed.

There may also be additional business case scenarios that can benefit from a Virtual
Element design. For example, imagine a purchase-charging business case that may need
to download charging models from a server to match the users regional tax regulations. The
Fabric can download and configure the Virtual charging expressions during the configuration
scope-phase and then apply those changing models in the Active scope. In these Virtual
Element designs, the topology reflects the general expression nature and the individual
elements express the specific required calculation (i.e. handle the more Micro-level

Note

5. Test and Simulat ion Design (Cont.)

 2. Collecting Simulation Data From a System (Cont).

Reactive Fabric assigns a dedicated Evaluation Queue to each evaluation expression chain. An
assigned thread (attached to the Evaluation Queue) executes all the behaviour of the expression,
including internal element processing and notification propagation along the element chain. This
arrangement ensures the synchronisation integrity of expression evaluation.
The Evaluation Queue's role is to execute submitted jobs. Internally, it is composed of a Job Queue,
to order and buffer submitted jobs and a Thread (or thread pool) to execute those jobs. So Jobs
submitted to the Evaluation Queue are pushed onto the Job Queue and then are popped off and
executed in the associated Thread in their queue order. This guarantees that individual calculations for
the expression are executed in the order that they are submitted. When other expressions notify the
current expression, those notification-calls are also passed to the Evaluation Queue so as to be
performed in executional order.
The Evaluation Queue is also enhanced with special anti-deadlocking support to handle self-recursive
calls on the same Evaluation Queue.
Inner Element co-operations such as timer actions are normally run in their own timer Evaluation
Queue but their results are handed over to (termed "joined with") the element Evaluation Queue to
again guarantee the timer products are synchronized with the element evaluation. Additional
Evaluation Queues can also be employed within elements for multi-thread processing. Their products
must also be joined with the element Evaluation Queue for notification synchronization.

Expression evaluation can be performed in a number of executional modes to suit concurrency needs.
Some expressions will may need to be asynchronous with respect to their caller, while others may
require synchronous relationships (to their caller).
The full expression evaluation types are:

⚛

 Asynchronous Evaluation: the expression is executed asynchronously in a separate
Evaluation Queue with the caller not being blocked.

⚛

 Synchronous Evaluation: the expression is executed asynchronously in a separate
Evaluation Queue while blocking the caller until evaluation completion.

⚛

 Inline Evaluation: the expression is executed synchronously in the same Evaluation Queue
as the caller. Expression evaluation returns back to the caller when finished.

Notifications are performed in the SDK by calling a notify() method on the target Element class and
passing the emission Notification as a parameter to the method. Each element in an expression chain
calls the notify() method of their downstream element. This in effect maps the notification chain in
Design Space to a function call chain in Code Space. The simplicity of this notification mechanism
yields performance benefits while providing ease of debugging (by placing breakpoints at strategic
notify() points and observing the call stack).

Normally, individual Fabric expressions are performed in a semi-independently fashion with
expressions coupling to their co-dependant partner expressions. But there are scenarios where
independent expressions may need to be co-orchestrated for purposes of collective throttling, such as
mating with energy consumption profiles, adaption to low resources, etc. One design option is the use
of a Common Clock to drive expression collectives. Here a Source element driven by a timer forms a
Common Clock which emits a Clock Notification that feeds into the fabric Sources (which now are
promoted to Operators in the new design) that triggers them to perform their own respective
emissions. Clock Notification emission is then managed to match the required timing profile.

6. The React ive Fabr ic Architecture.

 1. Concurrency Model: Element Synchronisation and Evaluation Ordering.

 2. Expression Evaluation Types.

 3. The SDK Notification Mechanism.

 3. Coordinating Fabric Activity.

Modern systems employ timer coalescing to perturb system timer events so as to co-align near-
adjacent events and so reduce system energy demands. This severely impacts on timer ordering in a
complex system as no longer does a timer triggered event strictly correspond to the system clock and
various sub-systems can no longer rely on consistent relative timing of events.
Reactive Fabric makes use of Virtual Time Schedulers to ensure time values are in order and are
comparable across disparate Elements and Fabrics. Notifications are timestamped with a Virtual
Time reference rather than the real time. This timestamp reference does loosely correspond to the real
time but is perturbed to guarantee order consistency across the Fabric.
Reactive Fabric is not temporally-strict enough for proper Realtime control but it is certainly suitable
for device control where there is some temporal leeway, where the order of magnitude of the leeway
roughly equates to the OS system timer coalescing leeway.

Notifications in Reactive Fabric are an encapsulation of both internal (SDK) Control and Design
notification payload tokens. These internal Control tokens signify pathway lifecycle events such as:

• The Initiation and Completion of the notification pathway stream.
• Error conditions raised by an element terminating the stream.

The actual design Notifications (that the designer works with) are emitted between the initiation and
completion Control tokens. The SDK performs checks that elements conform to these rules.
Notifications may also be timestamped with their emission virtual time and are made available to
Element processing for use in temporal decision logic.

Notification Pathways can be either one-way or bi-way transport mechanisms. The forward emit path
is always a push mechanism, pushing from the emitting Element to the receiving Element. In the
SDK this is effected by a method call on the target element class while passing the Notification as a
parameter.
The SDK has no direct synchronous pull mechanism but instead, there is support for an indirect
asynchronous method of pulling notifications upstream called the reply-back mechanism. Bi-way
transport pathways use this facility to pass reply-notifications upstream. The reply-back-mechanism
requires the forward notification to additionally emit the reply-back-mechanism (which is implemented
as a closure) together with the forward notification data and then in turn, the target element exercises
the reply-back-mechanism to hand back replies.

Elements in the Reactive Fabric incur minimal memory footprint. As a loose guide:

⚛

 A non-scoped, non-subsystem Element maps to: 1 x class.

⚛

 A non-scoped, Subsystem Element maps to: 3 x classes.

⚛

 A a scoped Element maps to: (Element class count) + (1 x stack)
+ (scope-count x struct).

⚛

 A Notification maps to An enum with an associated type which includes
 the notification data item.

6. The React ive Fabr ic Architecture (Cont) .

 4. Virtual Time References and Scheduling.

 5. Notification Architecture.

 7. Memory Sizes of SDK Elements.

 6. Notification Pathway Architecture.

In order to visualise pure topological nature we need another more basic visual representation, more
basic than the Reactive Fabric Element, as elements are decorated with additional attributed structure
over their topological character. We will use the standard mathematical construct of the Directed
Graph (visualising nodes and arrows) as a topological representation but also stipulate that there are
two types of arrows: one-way and bi-way. We also define a mapping from a Fabric Element to its
topological representation by:

• (i) A single element maps to a single topological node (but note the third point).

• (ii) A pathway maps to either a one-way arrow or a bi-way arrow, depending on its pathway
directionality (one-way or bi-way).

• (iii) Adjacent topological nodes, with identical in-and-out arrows are merged into a single node
representative as they are topologically identical. Also, if there is a terminator node on a single
file chain, then the whole operator/socket chain is collapsed to the terminator node.

Here are some simple example topological representations and mappings:

Generally, topologies with circular paths are are not desirable and there are replacement
arrangements that can be used to ensure formalised topologies are non-circular. Below is the basic
circular pattern with its replacement:

Also, just for context, here are the two most common topological patterns:

Circular Topology Non-Circular Equivalent

The Feed-back
pattern.

Name

Expression Topology

Joins two notification streams together either by merging the
streams, or combining the individual notifications.

Topology Description

The Broadcast pattern is applicable if the same notification is
emitted to both target nodes. If the notifcation target is selective,
then this is a Routing pattern.

The Join pattern.

Name

The Broadcast
and Route

pattern.

7. Fabr ic Topologies

 1. Classification of Topological Types.

Element processing is effectively a mapping function from the element input Notification Space to the
element output Notification Space.
Notification spaces can be discrete (such as enums) or continuous (such as floating point). Typically,
they are a composite (i.e. a struct or class object). The notation for the Notification Space is depicted
here below. The space subscript denotes the Element Name (in green), the superscript (in blue)
denotes the direction (f for forward, r for reverse) and port (i for input and o for output).

The Element state also requires representation, it is indexed over the element operational sequence
number:

The forward element process is expressed as a stateful function of
the element input Forward-Notification Space and the current
State of the Element to the output Forward-Notification Space:

The reverse element process is expressed as:

If the element does have state, then there is also a mapping on
the state from one element op to the next. The state may also
change with reverse notifications, so there is a corresponding
mapping for that as well. Shown to the right:

If the Element is simple, one-way and functional (without state) these
separate mappings collapse into one simple functional (stateless)
mapping as shown on the right:

The act of chaining elements together is mathematically equivalent to composing the individual function
mappings. This composite function maps from the first Notification Input Space to the end
Notification Output Space.

N<element name>
<direction><port>

 ƒe
f(Ne

fi
,
 Se(i)) ⇒ Ne

fo

 ƒe
r(Ne

ri
,
 Se(i)) ⇒ Ne

ro

 ƒe
f(Ne

fi) ⇒ Ne
fo

 ƒS(e)
f(Ne

fi, Se(i)) ⇒ Se(i+1)

 ƒS(e)
r(Ne

ri, Se(i)) ⇒ Se(i+1)

S<element name>(Element op sequence number)

8. Mathematical Notat ion for Element Interact ions

 1. Notification Spaces.

 2. Element Process-Mapping.

Message based architectures are generally not considered scalable. Reactive Fabric does provide
avenues to identify performance bottlenecks and offers mechanisms to handle or mitigate the effects.
Bottleneck identification revolves around analysing pathways with high throughput and ascertaining
what is driving that traffic. Going further, notification traffic is either driven by a system input pathway or
is generated internally, within the Fabric. So the driving mechanism must be managed in some way
depending on these two cases:

• The driving mechanism is external to the Fabric.
• The driving mechanism is internal to the Fabric.

The external options are:
• Design-in an exchange protocol to dynamically auto rate limit the external sources when the local

system detects overloading.
• Apply load sharing with separate processing systems (in separate processes) so that notification

handling is farmed to a system pool.

The internal options are:
• Apply intelligent batching of notifications to reduce messaging and iteration overhead. This is very

useful for audio and video processing when using notifications to channel audio/video content.
• Employing direct data channels between data-source and data-user elements. Rather than

passing notifications along a complicated pathway chain (that do not need to process the those
actual notifications). The data-user element emits a request for a data channel downstream to the
data-source element. The data-source replies back with a direct data channel optimized for the
situation, which the data-user element then employs for data sending or receiving.

• Optimisation: Ensure the notification is passed by class reference and so does not incur bulk struct
copying when being emitted between Elements. Also, make sure the source to target element
pathway is run synchronously, so as to not traverse thread contexts.

• Perform platform CPU-Thread load balancing (see below).
• Perform platform GPU off-loading (see below).
• Collapse the source to target element chain into a single element and handle the element

processing code in the traditional manner (such as optimised assembly).
The SDK Notification emission mechanism incurs a minimal CPU overhead as it is merely a function
call with the notification passed as a parameter. If the Notification memory footprint is large then it
advisable to ensure it is passed as a memory reference i.e. ensure the notification is a class and not a
struct to minimise copying between function calls. Performance analysers can also be used to localise
the cause of performance bottlenecks.
Bottlenecks are also possible if all available threads/CPUs are not being properly utilised. Here platform
CPU and GPU resources can be separately modelled as a Fabric Service or Operator. That resource
element is made CPU/GPU aware and received notifications are then internally farmed out in a
balanced manner to those resources. The Fabric then routes intensive notifications to these services
that guarantee balanced processing. Their results can also be queued and batched to minimise
Service/Operator element emission rates.

9. Scalabi l i ty and Performance

 1. Analysing and Handling Performance Bottlenecks.

Before siting direct code examples, some background information is first required. The various code
samples given here in this document are authored in the Swift 5 language.

All SDK definitions are organised into a namespace hierarchy with the base designation: "Rf". Each
design element in the design space is mapped to a single generic class in the code space. In these
classes, the generic parameter InItem is used to denote the reception notification data-type and
OutItem to denote the emission notification data-type. Here are the declarations for the abstract
Element classes that support single-way notification:

Element notifications are performed by exercising the notify() method on the Element-class while
passing the Notification-data and its Virtual-timestamp (of type Rf.VTime) as parameters.
Notifications come in two varieties: Item notifications, as used in Fabric Design and Control
notifications (used by the SDK to coordinate Element operation). Here are their declarations:

The behaviour of an element is described by defining how the element responds to received
Notifications. This behaviour is stipulated by the client by defining two closures, one for each
Notification category:

Within these client defined closures, notifications can be emitted to the next downstream element by
exercising the notify method on the producer property of the Element-class. For example:

Expression/Element evaluation is initiated through the Element-class method: beginEval() and
correspondingly, terminated with endEval(). Here are their declarations:

10. Code Examples

 1. Introduction to Code Samples.

public	func	notify(item:	InItem,	vTime:	Rf.VTime?)								//	Item	notify	method

public	func	notify(control:	IRfControl,	vTime:	Rf.VTime?)	//	Control	notify	method

producer.notify(item:	item,	vTime:	vTime)

 2. Background: Element and Notification Representation.

public	class	ASource<InItem>						 //	The	Source	Element	Abstract	Class
public	class	AOperator<InItem,	OutItem>			//	The	Operator	Element	Abstract	Class
public	class	ACollector<OutItem>										//	The	Collector	Element	Abstract	Class

 3. Background: Defining Notification Handling within Elements.

public	var	onItem	:	(InItem,	Rf.VTime?)	->	Void							//	Handle	item	notification

public	var	onControl:	(IRfControl,	Rf.VTime?)	->	Void	//	Handle	control	notification

public	func	beginEval(_	evalType	:	eEvalType,	vTime:	Rf.VTime?)	//	Begin	Evaluation

public	func	endEval(vTime:	Rf.VTime?)																											//	End	Evaluation

 4. Background: Initiating and Terminating Evaluation.

Below is an example of one of the simplest of operators, the Observe operator which runs a given
closure: onItemFunc() on each received item notification (and then emits the notification). In the code
below, the SDK factory is used to create the operator instance and then the customization of its
notification handlers is performed. In this particular operator, only the onItem handler is defined and
the onControl handler takes its default action:

Normally, the operator logic is defined as a static in the Rf.Operators namespace, and then an
extension in the abstract Element class (Rf.AElement) is introduced to support composition of the
element. Here is the extension for the observe operator:

The operator can then be exercised in the following manner and the onItemFunc closure here is
defined so as to print the received notification items. The expression in the code below is evaluated
asynchronously:

extension	Rf.Operators		
{
				public	static	func	observe<Item>(_	traceID:	Rf.TraceID,	
																																							item	onItemFunc:	@escaping	(Item,	Rf.VTime?)	->	Void
)	->	Rf.AOperator<Item,	Item>
				{
								let	observeOperator:	Rf.AOperator<Item,	Item>	=	RfSDK.factory.Operator(traceID)

								observeOperator.consumer.onItem	=	{	[weak	observeOperator]	(item:	Item,	vTime:	Rf.VTime?)	in

												guard	let	strongOperator	=	observeOperator	else	{	return	}

		//	Pass	the	notification	to	the	given	closure.
												onItemFunc(item,	vTime)
												

		//	Emit	the	notification.
												strongOperator.producer.notify(item:	item,	vTime:	vTime)
								}

								return	observeOperator
				}
	}

extension	Rf.AElement			
{
				@discardableResult	public	func	observe(_	traceID:	Rf.TraceID	=	Rf.TraceID("observeItem"),	
														 																														item	onItemFunc:	@escaping	(OutItem,	Rf.VTime?)	->	Void
)	->	Rf.AOperator<OutItem,	OutItem>
				{
								let	observeOperator	=	Rf.Operators.observe(traceID,	item:	onItemFunc)

								//	Compose	the	previous	operator	(i.e.	self)	with	the	observeOperator.
			compose(observeOperator)

								return	observeOperator
				}
}

//	Note:	definitions	for	mySource	and	myOperator	are	not	defined	here.

func	onItemFunc(_	item	:	Int,	_	vTime:	Rf.VTime?	=	nil)	{	print(item)	}

let	mySource	=	Rf.Sources.mySource<Int>()

mySource.observe(item:	onItemFunc).myOperator().beginEval(.eAsync(nil))

10. Code Examples

 5. A Simple Operator Example: The Observe Operator

Below is a support operator called onNotify which takes a given general notifyFunc() closure and
funnels all notifications (both item and control) through to that closure. The operator is used in the
next time-based operator example. This operator additionally tracks the item sequence index and
supplies that to notifyFunc() together with the item notification. It also handles Fabric tool installation
which is used to disseminate tools such as schedulers to the Element.

extension	Rf.Operators
{
				public	static	func	onNotify<InItem,	OutItem>(
																				_	traceID	:	Rf.TraceID,	
																				_	notifyFunc:	@escaping	(Rf.eOperatorNotification<InItem>,	Rf.AElement<InItem,	OutItem>)	->	Void
)	->	Rf.AOperator<InItem,	OutItem>
{
				typealias	eFabricNotify	=	Rf.FabricScope.eNotify
				typealias	eEvalNotify	=	Rf.EvalScope.eNotify

				let	onNotifyOperator	:	Rf.AOperator<InItem,	OutItem>	=	RfSDK.factory.Operator(traceID)

				var	currentIndex	=	0

				onNotifyOperator.consumer.onItem	=	{	[weak	onNotifyOperator]	(item:	InItem,	vTime:	Rf.VTime?)	in

								guard	let	strongOperator	=	onNotifyOperator	else	{	return	}

								notifyFunc(.eItem(currentIndex,	item,	vTime),	strongOperator)

								currentIndex	+=	1
				}

				onNotifyOperator.consumer.onControl	=	{	[weak	onNotifyOperator]	(control,	vTime)	in

								guard	let	strongOperator	=	onNotifyOperator	else	{	return	}

								switch	control
								{
												case	eEvalNotify.eEvalBegin(let	evalType):

																if	let	keys	=	strongOperator.tools?.keys
																{
																				for	name	in	keys
																				{
																								notifyFunc(.eFabricTool(name,	strongOperator),	strongOperator)
																				}
																}

																notifyFunc(.eEvalControl(.eEvalBegin(evalType),	vTime),	strongOperator)

												case	eEvalNotify.eEvalRestart(let	evalType):

																currentIndex	=	0

																notifyFunc(.eEvalControl(.eEvalRestart(evalType),	vTime),	strongOperator)

												case	eEvalNotify.eEvalEnd(let	error):

																notifyFunc(.eEvalControl(.eEvalEnd(error),	vTime),	strongOperator)

												case	eFabricNotify.eInstallTool:

																strongOperator.producer.notify(control:	control,	vTime:	vTime)

												default:

																strongOperator.producer.notify(control:	control,	vTime:	vTime)
								}
				}

				return	onNotifyOperator
}

10. Code Examples (cont)

 6. Operator Example Handling Both Item and Control Notifications.

The throttle operator is defined below to propagate item notifications at a given rate as specified by
the duration parameter. A fabric scheduler is used to control the temporal window that disallows
item notification propagation. The scheduler is disseminated by the fabric to the element before
evaluation and passed as the eFabricTool input notification:

public	static	func	throttle<Item>(_	duration	:	TimeInterval,	settings	:	Rf.SchedulerSettings)	->	Rf.AOperator<Item,	Item>
{
				typealias	eEvalNotify	=	Rf.EvalScope.eNotify

				let	traceID																											=	Rf.TraceID("throttle")
				var	scheduleTool	:	Rf.Tools.Schedule?	=	nil																																	//	The	fabric	scheduler.
				var	allowItemsToPass																		=	true																				 //	Indicator	of	whether	to	pass	item	notifications.

				let	throttleOperator	:	Rf.AOperator<Item,	Item>	=	Rf.Operators.onNotify(traceID,	{	(inputNotification,	element)	in

								switch	inputNotification
								{
												case	.eFabricTool(let	(name,	tools)):																						 //	On	a	Scheduler	Fabric	Tool	install	request.

																if	name	==	"scheduler",	let	tool	=	tools.getScheduleTool(traceID)
																{
																				scheduleTool	=	tool	 							//	Set	the	scheduler.
																}

												case	.eEvalControl(.eEvalBegin(let	evalType),	(let	vTime)):									//	On	a	begin	evaluation	Control	notification.

																guard	let	scheduleTool	=	scheduleTool,	let	evalQueue	=	evalType.evalQueue		else
																{
																				RfSDK.assertionFailure("\(traceID):	No	scheduler	or	evalQueue	available");		return
																}

																evalQueue.dispatch(sync:	{	allowItemsToPass	=	true	}) //	Set	allowItemsToPass	in	the	evaluation	queue	thread.
																
																scheduleTool.evalQueue	=	evalQueue																
																scheduleTool.subscribe(settings:	settings) //	Subscribe	to	the	scheduleTool.

																//	Propagate	the	Eval	Begin	event.
																element.producer.notify(control:	eEvalNotify.eEvalBegin(evalType),	vTime:	vTime)

												case	.eItem(let	(_,	item,	vTime)):																																		//	On	an	Item	notification.

																//	Selectively	propagate	item	notifications	given	by	allowItemsToPass.
																if	allowItemsToPass
																{
																				allowItemsToPass	=	false

																				//	Schedule	a	throttle	time	window,	depending	on	the	type	of	time	reference	we	have	for	the	current	time.
																				if	let	vTime	=	vTime
																				{
																								//	A	virtual	time	reference	is	available,	use	it	to	schedule	the	next	processing	event.
																								scheduleTool!.schedule(atVTime:	duration	+	vTime,	action:	{	(time)	in

																												allowItemsToPass	=	true
																								})
																				}
																				else
																				{
																								//	Use	a	real	time	reference	instead	to	schedule	the	next	processing	event.
																								scheduleTool!.schedule(atTime:	Date(timeIntervalSinceNow:	duration),	action:	{	(time)	in

																												allowItemsToPass	=	true
																								})
																				}

																				element.producer.notify(item:	item,	vTime:	vTime)
																}

												case	.eEvalControl(let	(evalEvent,	vTime)):																							 	//	On	any	other	control	notification.

																if	let	scheduleTool	=	scheduleTool
																{
																			scheduleTool.unsubscribe(vTime:	vTime)																			 //	Unsubscribe	from	the	scheduleTool.
																}

															element.producer.notify(control:	evalEvent,	vTime:	vTime)								//	Propagate	the	event.
								}
				})

				return	throttleOperator
}

10. Code Examples (cont)

 7. Temporal Operator Example: The throttle Operator.

Reactive Fabric permits a great deal of scope and flexibility in what it is employed for. It does not
need to be utilised on all system aspects, it can be used for specific purposes and targeted application.
For example, it can be just used on the Macro behaviour level, performing high-level management. It
can be used to funnel requests and data to and from non-Reactive Fabric processing units.
These alternate non-Reactive Fabric processing units may include:

• AI processing nodes, (i.e. learning systems).
• Legacy code that is not intended to be changed or is currently in the process of being refactored

from a traditional model to Reactive Fabric.
• Cross Platform IP that is not intended to be ported to Reactive Fabric but instead to be wrapped

by it.
• Third Party Libraries for which source is not available.
• Processing farms (GPU/CPU/Remote RPC/Render).

Reactive Fabric is also a natural medium for streaming data and orchestrating high level
management. This makes it a prime complementary technology for integration with learning systems.

In scenarios of legacy system conversion, not all of the legacy code may require to be converted.
There are also many conversion developmental paths:

• The general recommended method is to convert piecemeal, taking sections with clear boundaries.
First identifying internal services and converting those to Reactive Fabric services. Then
identifying IO pieces converting those and finally filling in the appropriate holes.

• Convert in top down fashion, converting Macro behaviour first, so that it orchestrates existing
Micro behaviour and then in piecemeal, convert the appropriate underlying legacy code.

• Convert by addressing areas of concern first (such as performance concerns).
During conversion, there may be an number of designs produced, one being for an ideal design (for a
whole new system) and others that constitute more workable designs that mate with the existing
system contour-boundaries to be more advantageous for the conversion process.

Reactive Fabric may in the future, have more tools such as:
• Visual tools to input designs, in the same way that UML employs visual input tools.
• Auto-generating implementation skeletons from designs (which are then manually filled in).

Reactive Fabric is a medium in which to express design and as AI plays more of a role in the
generation of systems, Reactive Fabric designs could be an appropriate medium in which to express
human comprehendible AI generated systems.

Currently, the Reactive Fabric SDK supports the Swift 5 language. The roadmap does include the
Kotlin language. (The Linux platform is also supported by the Swift language).

11.Technology Side Aspects

 1. Hybrid Systems.

 3. Future Possibilities for Reactive Fabric.

 4. Current Platform Support.

 2. Conversion of Legacy Systems.

Reactive Fabric orientates and synchronises the individual design-development processes to work
together through pure design, which even includes the design of the development process itself. It
amplifies the benefits of its individual facets to become more than the sum of its parts.
Reactive Fabric, stands as a confluence of a number of previous software technologies and influences
including: Reactive Extensions, Micro-Processes, Functional Programming, the more distant work
of the Haskell Language, Software Patterns, Sequential composition, UML design and the concept
of Event Streams.
With respect to these software technologies:

⚛

 The Haskell language provided the abstraction where you don't merely define static behaviour
but dynamically generate the target behaviour. This decouples the temporal epochs of when behaviour
is defined from when it is executed and makes that behaviour a first class citizen, so that it can be
handed over to a distant execution point. So basically, rather than writing a function to do something,
we define a function which will construct a function to do that something and then pass it on to where it
is to be executed. This also supports provisioning of resources at the time that it is required (execution
time rather than at definition) and the provision for post customisation of the generated behaviour.
Haskell also provided the concept of functional composition (which also goes by other names of
sequential composition and fluent programming style). It also introduced the concept of the functor
(where function behaviour is transformed through mapping functions).

⚛

 Reactive Extensions came much later and drew upon Haskell concepts. It melded the ideas of
the Event Stream with the Observe/Observable Pattern to be what we know it as today. Reactive
Extensions was another software epoch, but it was developed as a strict library of Observables and
Observers (take, skip, interval, zip, etc). As a bulky library, it was never abstracted and condensed to a
concise set of extendable principles. It was scoped as solely at the implementation level and as such
does not engage in the design process. Reactive Extensions also hides its internal operation, so it does
not inherently permit the developer to participate together with its operation. The framework is more of
a remote mechanism which the developer engages rather than participating with.

⚛

 Micro-Processes: where Reactive Extensions provides a well defined conceptual framework
and code interface, the Micro-Process concept has been too abstract, with insufficient support to define
how messaging is performed and with no patterning or classification of the different roles and
arrangements of the individual micro processes. (Adding more context, various groups have gone on to
put forward their own messaging protocol and serialisation schemes). The Micro-process concept was
innovative, but it lacked implementation support and design backing.

⚛

 UML Design was a blueprint tool, more of a representation of the implementation rather than a
description of the pure design. It was too low level (suffered from over detail) and overly coupled to the
target (class-object) language. It did not cater for levels of detail and as such, quickly became unwieldy.
Also, its target audience is limited to software specialists.

⚛

 Event Streams is a core implementation only concept and by itself, does not handle complex
asynchronous scenarios.
Using the metrics of Domain (i.e. design and implementation) and Scope of Behaviour (Macro, Mid
and Micro) to classify the applicability of software technologies, here is a table classifying the coverage
of the respective technologies we have just discussed:

Implementation and Design balanced. Macro to Micro

Applicable Domain Scope of Behaviour

Micro, reaching towards MidMore Implementation and less Design

Reactive Fabric

Name

Reactive Extensions

More Design and less Implementation. MacroMicro-Processes

Implementation only Micro onlyEvent Streams

Appendix 1. React ive Fabr ic Origins, History and Comparisons

 1. History of the Reactive Fabric Concept.

Currently Reactive Fabric supports the Swift language (which does support the linux platform) but is
road mapped for other languages such as Kotlin.

⚛

Reactive Fabric White Papers and Briefs:

• The Reactive Fabric White Paper, in three parts:
- Reactive Fabric White Paper Part 1 of 3.pdf
- Reactive Fabric White Paper Part 2 of 3.pdf
- Reactive Fabric White Paper Part 3 of 3.pdf

• For Desktop and Mobile Apps:
- Reactive Fabric For Desktop and Mobile Product Application.pdf

• For IOT:
- Reactive Fabric For IOT Product Application.pdf

⚛

Website pages:
• Originware site: originware.com
• The Reactive Fabric web page: originware.com/reactivefabric.html

Apps designed on Reactive Fabric principles:

⚛

 The Dronenaut iOS App on the App Store The Dronenaut App
(employs the older Reactive Patterns SDK)

⚛

 The Reactive Fabric Sample App: Reactive Fabric Sample Kit For iOS

(employs the Reactive Fabric SDK)

Please direct questions and requests for more information to:

Terry Stillone (terry@originware.com)

More Information

 1. For More Information.

 2. Reactive Fabric Samples.

 3. Contact.

https://www.originware.com/doc/Reactive%20Fabric%20White%20Paper%20Part%201%20of%203.pdf
https://www.originware.com/doc/Reactive%20Fabric%20White%20Paper%20Part%202%20of%203.pdf
https://www.originware.com/doc/Reactive%20Fabric%20White%20Paper%20Part%203%20of%203.pdf
https://www.originware.com/doc/Reactive%20Fabric%20For%20Desktop%20and%20Mobile%20Product%20Application.pdf
https://www.originware.com/doc/Reactive%20Fabric%20For%20IOT%20Product%20Application.pdf
https://www.originware.com
https://www.originware.com/reactivefabric.html
https://www.originware.com/dronenaut/
https://www.originware.com/rfsamplekit.html
mailto:terry@originware.com

