
October 2019 Product White Paper

Author: Terry Stillone (terry@originware.com)

Web: originware.com

Version: 1.0

"Language shapes the way we think and

determines what we think about."
Benjamin Whorf, American Linguist 1897 - 1941

White Paper Part 2/3 - Informal Introduction

SDK For iOS, OSX (and coming for Linux)

mailto:terry@originware.com
https://www.originware.com

This section (Part 2), centres on the background concepts of the Reactive Fabric Technology. It
defines the "what is" of the technology in conceptual terms for a non-technical audience. The next
follow on Part 3, will go into the technical specifics of the technology.
Summarising Part 1, The Reactive Fabric Technology takes a connective and supportive
approach to the whole software developmental organisation unit. It connects the technical staff (who
synthesize and refine Software Designs and produce Implementations) with associated non-
technical parties (who support the general development process).

Nature as a designer, employs a number of Design Principles in its portfolio of Biological Systems.
Reactive Fabric employs a major principle that nature exploits for control of these Biological
Systems. In interactional terms, this design principle is:

Examples of this Design Principle in Biological Systems include:

⚛

 Electrical impulses routed through nerve pathways.
- Employed to engage muscular action by the brain/reflex system.
- To propagate sensory signals from sense organs to the brain.

⚛

 Chemical signalling messengers that traverse vascular pathways.
- Used by the endocrine glands to effect and regulate body changes.
- Engage and regulate immune system response.

⚛

 Electro-chemical messaging in synapse pathways within neural clusters.
- Encode electrical based temporary memory patterns to permanent neural encoded

memory patterns.
This Design Principle is also incorporated into the design and operation of electronic devices:

⚛

 A driver transistor injecting electrons along a conductive pathway to a receiver transistor.

⚛

 A laser emitting messenger photons along glass fibres to a target photonic receiver.

Reactive Fabric abstracts this natural Design Principle into the basic concepts of:
• The Notification (i.e. the message).
• The Element (that emits, receives and acts on Notifications).
• The Transport Pathway that inter-connects Elements for notification emission and reception.

Lets concrete these abstract ideas with some examples, lets treat the basic, mechanical operation of
the human body as a system in itself and create a conceptual system design that reflects the
interaction between these elements. Notifications will represent the electrical impulses between the
elements (body parts).
Of course, the body in itself is an extremely complex organism, but ... we are not implementing a full

system here, we are just describing the conceptual high level design. It is engineers who
will then take our high level designs, form micro detail-level designs and follow though with a
whole system implementation. That engineered system will still reflect our conceptual design
(just with more detail).

An emitter element (termed a Producer) deploys an active messenger through a transport
pathway to:
 ⇒ Deliver the message to a target element (called the Consumer).
 ⇒ To Engage the target element to act upon the received message and perform something.

Note

1. Introduct ion

 1. Introduction to Part 2 of the White Paper.

 2. The Concept of "The Design Principle".

Here to the right is an example body design. The elements (head,
arms, hands and legs) form the functional elements. The blue
forward arrows indicate forward messaging pathways between the
elements and smaller secondary red (back directing) arrows
indicate back reply messages triggered by their forward counterparts.

When the head element commands the left arm to move, it issues a
notification (message) along the blue arrow pathway to the left arm.
The arm element then responds to the forward notification with
muscular action and replies back with notification (feedback)
telemetry (in the red arrow direction). This telemetry indicates the
active muscular response of the arm. The head then interprets those
muscular responses to compute the current arm position and in turn
regulates its emission of forward notifications to effect the intended
full movement action and then bring the arm motion to rest. This
notification interaction is described in the next Sequence Diagram to
the right.
This particular design exhibits a centralised interaction topology,
utilising low level notification commands. It results in the notification
pathways exercising a high volume of notification chatter with
possible overburden on the processing and energy demands of our
system. So if this was a Version 1 Design, lets propose a design
iteration change for Version 2 with more appropriate energy
consumption.
Lets get the individual elements to be addressable, more intelligent,
and handle high level movement commands which indicate the
position to move to. In our new design (next diagram to the right), all
notifications are now routed through a Nervous System element.
When the head needs to effect a left arm movement, it emits a high
level notification that includes the target element to engage into
action and the relative position it is to move to. The Left Arm
Element is more self aware in the new design, in terms of its position
relative to the body and back-replies when it has moved into position,
so as to verifying the position it has reached. This new design trades
off notification volume for more complex, self-aware elements.
The new topology also provides for a central routing element (i.e. the
Nervous System) and so provisions the possibility of that element
being used as a "Test Point" for monitoring and injecting notifications
and for testing individual body elements. The Test Point can also be
used to record real time notifications which can then be used for
playing back into the Nervous System and simulate activity. The
design also makes the Head element more independent of the Left
Arm behaviour as it only needs to understand arm positions and not
muscular dynamics and arm mechanical behaviour.
In these body designs, we have described a "macro system
behaviour design model". We can also come up with medium level
designs. Here on the right is a simple concept design for the body
adrenal glands. Notice this design is for a one way messaging model
as opposed to the previous bi-directional model. The Adrenal glands
message through the blood stream pathway and messaging is
through the use of a hormone molecule rather than an electrical impulse.

1. Introduct ion

 3. Example Conceptual Design.

The "Notification" concept is an analogy of the electrical impulse, the chemical messenger or the
network data packet. In abstract terms, it is a transportable data entity which requires a transport path
for traversal between Elements. The Notification encapsulates the information that is to be messaged
between particular elements and over time, collectively constitutes a Data Stream of Events with their
associated event-data encapsulated in the
notification payload.
Producers of notifications are termed Source
Elements and consumers are termed Collector
Elements. The diagram to the right depicts, a
Source element notifying a Collector. There are
control notifications (i.e. the Begin and End stream
notifications) and there are data notifications with an
integer data-type (values: 1 .. 3).
As Source elements merely produce notifications, Collector elements only consume, Operator
elements on the other hand both consume and produce. Operators derive their output notification from
the corresponding input notification data. Thus a systems behaviour and state is described by
notifications flowing through the whole system in the same way that a physical organic system changes
its state as a response to stimuli. All this interaction-activity ultimately constitutes the whole system
behaviour.
Lets look at a more direct application of the design principle. Say we have a toy remote control vehicle
and we are to design a mobile Reactive Fabric app that displays telemetry from the vehicle. The
telemetry includes the toy's wheel rotation speed (in revolutions per sec) and front wheel direction (in
degrees). Our App is required to perform realtime analysis, to compute the path of the vehicle and
draw it on the device's screen. Our design (given below) describes the reception of telemetry as two
source elements, one for the front wheel angular speed (Rotational Speed notification) and one for
wheel direction (Angle notification). We utilise an operator to perform a convolution of those two
source element notifications to calculate the delta positional change (as a velocity vector: (dx, dy))
and then feed that into an integration operator to calculate the travelled position of the toy (x, y) over
time:

Going into more detailed App requirements, when we are drawing the motion of the toy (on the device
display), we want to display a smooth path on the screen (not a jagged one). So lets add smoothing
capability to the Position Integrator operator. We also need to put some text up on the screen to
describe the speed of the toy, (i.e. indicate when stopped and when in motion with a speed level). So
lets add an additional Annotator Operator element which takes the position from the Position
Integrator, analyses the position at various time increments and emits a resultant textual summary of
what the toy is doing. The annotator then emits textual annotations when the toy is stopped, in motion
(with a speed level), when reversing, etc.
The results of the Annotator Operator and the toy positional information are fed into the element that
becomes the presentation View Model. This element has the role of drawing the toys path on the

2.React ive Fabr ic Concepts

 1. The Concept Of The "Notification"

Reactive Fabric abstracts common Element roles into a set of Reactive Fabric Patterns that are
reflective of their general use.

⚛

 In the technical-design domain, these patterns differentiate the various element topologies
(i.e. whether they have inputs, outputs, reply pathways, etc).

⚛

 Where as in the socio-communicative domain, they form the base model vocabulary and are
used during discussion to describe the facets of the model.

The table below lists the base design patterns together with their respective topologies.

Source Soley generates Notifications, does not receive
notifications or back-replies. Produces to one-way
notifcation path.

Collector Collects Notifications and makes them available for
consumption. Consumes from a one-way notifcation path.

Service Provides a notification Service, receiving request
notifications and back-replying results.

Socket A bi-way variant of the Operator.

SubSystem A Subsystem manages a sub-collective of Elements. The
Subsystem input and output notification streams are made
available to the sub-collective elements for internal
processing. Their resultant notification stream is then
forwarded to the output stream of the Subsystem.

Controller A Controller of elements. Acts as a source but also can
receive back-notifications (a bi-way variant of the Source).

Pattern Description Topology

Operator Operates on input Notifications to derive output
Notifications. Consumes and produces on one-way
notifcation paths.

We now follow on to how a real system is decomposed into an Element collective and function as a
real system. An Element collective is called a "Fabric".
All systems, have inputs, outputs and some intermediate processing mechanism that connects those
inputs to outputs. This is typified by this very simple design:

But real systems typically have a myriad of inputs and outputs and require complex processing. A
calculator for example, has an input for each button, an output for the main display, then output
indicator labels for the various calculator modes and there are register stores and so on. The
processing Fabric for a calculator would need to not only need to perform calculations but conversions
depending on calculator modes. Let's go on to build a calculator design (conceptual design).

3.React ive Fabr ic Element Patterns

 1. Reactive Fabric Patterns

In the calculator design given to the right, inputs are on the left side of the diagram and outputs are on
the right. Each button input and
calculator mode switch is represented
as a Source element and each
output calculator display-element is
represented as a Collector.
The digit buttons feed into the
element that describes the Register
Stack of the calculator, which stores
the current calculation values. The
Register Stack (Service) also drives
the Result Display to show the top
value of the stack. So when digits are
being entered they are emitted
individually to the Register Stack
which then appends them into the top
stack register entry. Those changes
are then emitted to the Result Display, so that the display reflects the entered digits as they are
pressed.
When a function button is pressed to perform an arithmetic operation, the Supervisor Operator
retrieves the value(s) from the Register Stack, forwards them the to Arithmetic Operator, which
performs the calculation and channels the result back to the Register Stack, replacing the top-value(s)
used in the calculation with the result. The Register Stack then updates the Result Display with the
new result. The Supervisor also retrieves the Calculator Modes before performing a calculation and
includes them with the values to the Arithmetic Operator so that the calculations are appropriately
converted.

Not all systems have multiple inputs as the
calculator example, some systems have only one
Input/Output Element (IO Element) and the Fabric
topology of a design will naturally reflect the
character of the systems input and output (IO).

Here is an example of a HTTP Web Page Server
with a Network IO element which functions as the
only IO Element for the Fabric:

Focusing on the internal elements of both of these
designs, lets discuss their general character.
Some simpler data-processing expressions have a
one-way notification pathway character where as
more complex interactions will tend to require bi-
way notification interchange.
Simple data-processing is typically performed by
Operators. Shared services (within the fabric) will
tend to be Service elements. Complex expression
pipelines will tend to represented by Socket chains.
Where element collectives co-perform a joint role
within the system, they can be encapsulated into a Subsystem element. Complex Service elements
may also be internally composed of element collectives.

4.How Does A React ive Fabr ic Perform

 1. Example Designs

Reactive Fabric engages the whole team in the design process, from management, to software design
& development, testing, documentation and possibly even affecting non-technical facets such as
marketing. This cross connective-engagement is precipitated by providing the design models to all
parties and most importantly it makes them:

⚛

 Available at their own level of engagement.

⚛

 Available at their own level of appropriate detail.

⚛

 and this is realised through the use of model LOB (Level Of Behaviour).

Functional-Practical Designs will tend to be handled by technical staff and less detailed, more
Conceptual Designs are typically made available for consumption by non-technical associates.
As the technology principle is based on Design for Interaction, the process of developing these
designs reflect in the team group interaction. The quality, authenticity and openness in the team
interactions back-reflect to the quality, authenticity and openness of the design product.
The development process is performed
in a number of design and
implementation cycles. The first cycle
is to produce operational design
models. These initial models are on
the conceptual level, not practical-
technical (meaning they are not
implemented). The conceptual models
form a base from which practical
designs are derived and then these
practicals go on to be implemented.
This development cycle-process is
outlined in the sequence diagram to
the right:
The whole process begins with a group
meeting to look at project use-cases
and form the first conceptual macro-
operational model (which is very
much a raw macro-design-product).
This conceptual design naturally
defines functional boundaries, which
are used to synthesize teams and
team sizes. Those teams then
individually over time, work on their
assigned raw concept models to detail
and mature them for integration back
into the original macro-design. The
original design group is then
reconvened to back-integrate the team
models. The group eventually agrees
upon the first conceptual model,
tagged as: "Iteration 1 Conceptual
Operation Design".
Once the conceptual design is accepted, the practical design phase begins to produce Iteration 1
Practical Design Model (which follows a similar development process). Practical designs are more
piecemeal and are iterated over, to incrementally build up functionality and each is used as a backing
for an implementation (which reflect their design incremental functionality). The practical iteration
process continues until full functionality is realised.

5. The React ive Fabr ic Development Process

 1. Reactive Fabric Design as a Group Collaborative Process.

In fact, the whole Reactive Fabric Design-Process can be modelled as a design in itself,
reflecting team interaction. The main characteristic here to note is the pipeline character of the
topology which expresses the fundamental process of:

Design ⇒ Implement ⇒ Test

Also, note that the upper row of Sockets represent the integration group meetings while the lower
row of Subsystem elements represent the individual work-teams.

The teams denoted in the diagram may not be composed of all separate individuals. Teams will
probably be sharing members as they operate at different cycles. The Design Integration Group,
may come together to integrate separate sub-system designs and then break up to form the
individual Subsystem Design Teams. For smaller projects, the implementation team members
may also comprise of the design team members, again, coming together in an implementation
cycle and then dispersing to re-form design teams. Also, sprint cycles can be arranged into the
design-implement-access phases so as to have design sprints followed by implementation sprints
and so on.

The design of the development process needs to be addressed before or at outset of the
development cycle. There is huge flexibility as how and what the development process design
ends up being. The design must cater for team size, expertise, project priorities, project and
product complexity, timelines etc. All the trade offs that come into play when designing software
also come into play when designing the project development process. There is even scope for
iterative design of the project development process. The final project cycle may require a different
development process design to the initial project cycle and situations may arise that preempt re-
addressing the development process design mid-project, such as loss of key members, changes
to product goals and requirements.

5. The React ive Fabr ic Development Process (Cont)

 2. The Reactive Fabric Design Process as a Design In Itself.

This White Paper continues onto Part 3 (see links below), which formalises the technology.

⚛

Reactive Fabric White Papers and Briefs:

• The Reactive Fabric White Paper, in three parts:
- Reactive Fabric White Paper Part 1 of 3.pdf
- Reactive Fabric White Paper Part 2 of 3.pdf
- Reactive Fabric White Paper Part 3 of 3.pdf

• For Desktop and Mobile Apps:
- Reactive Fabric For Desktop and Mobile Product Application.pdf

• For IOT:
- Reactive Fabric For IOT Product Application.pdf

⚛

Website pages:
• Originware site: originware.com
• The Reactive Fabric web page: originware.com/reactivefabric.html

Apps designed on Reactive Fabric principles:

⚛

 The Dronenaut iOS App on the App Store The Dronenaut App
(employs the older Reactive Patterns SDK)

⚛

 The Reactive Fabric Sample App: Reactive Fabric Sample Kit For iOS

(employs the Reactive Fabric SDK)

Please direct questions and requests for more information to:

Terry Stillone (terry@originware.com)

6. More Information

 2. For More Information.

 1. Further Reading

 3. Reactive Fabric Samples.

 4. Contact.

https://www.originware.com/doc/Reactive%20Fabric%20White%20Paper%20Part%201%20of%203.pdf
https://www.originware.com/doc/Reactive%20Fabric%20White%20Paper%20Part%202%20of%203.pdf
https://www.originware.com/doc/Reactive%20Fabric%20White%20Paper%20Part%202%20of%203.pdf
https://www.originware.com/doc/Reactive%20Fabric%20White%20Paper%20Part%203%20of%203.pdf
https://www.originware.com/doc/Reactive%20Fabric%20For%20Desktop%20and%20Mobile%20Product%20Application.pdf
https://www.originware.com/doc/Reactive%20Fabric%20For%20IOT%20Product%20Application.pdf
https://www.originware.com
https://www.originware.com/reactivefabric.html
https://www.originware.com/dronenaut/
https://www.originware.com/rfsamplekit.html
mailto:terry@originware.com

