
October 2019

Author: Terry Stillone (terry@originware.com)

Web: originware.com

Version: 1.0

Product White Paper

White Paper Part 1/3 - Benefits Of The Technology

SDK For iOS, OSX (and coming for Linux)

mailto:terry@originware.com
https://www.originware.com

If you work in the Software Development industry, you probably understand just how complex software
systems have become. You probably also appreciate the relentless drive to continually encompass
more and more product capability. This situation sets up a developmental syndrome, which inevitably
leads into software complexity escalation. As a reflection of this trend, I take it that a part of your role is
to manage the impact of complexity creep and you have an active interest in solutions.
If your role encompasses product management, then you probably have concerns over product
complexity and the impact on balancing schedules, project resources, product quality and product
confidence. If your work envolves implementation, you are probably constantly trading off between
meeting development schedules and the level of introduced complexity together with its associated
technical debt. You probably also schedule cycles to address complexity overreach only when it
reaches critical mass (that is the agile method). Unfortunately, this strategy does not directly address
the core issue. You knew from the outset of the project, that complexity was going to be a concern, so
why didn't incorporate processes to handle it from the beginning of the project?
Software language hasn't solved the complexity problem: new evolving software languages are
supplying more flexibility and greater conciseness of expression but language has been traditionally
focused on micro-capability and given little priority to managing macro-complexity. While language-
technology has been evolving, pure software design technology has not. Design should be managing
the macro-complexity, leaving language (code) to concisely express micro-behaviour.
Nature designs systems that appear complex in behaviour but in actuality are comprised of simple
independent micro-processes which interact as a whole organism to perform complex interaction.
Reactive Fabric employs those same design principles to incrementally design complex software
systems while retaining the simplicity of the individual micro-processes. As such, Reactive Fabric is fit
for purpose in complex systems but it is also applicable as a unifying agent for projects with multiple
(vertical) platform tiers that require a unified design-process across the various platforms and disparate
components.
Reactive Fabric Technology is a "Design for interaction" software architecture / design methodology /
design notation / design process / design collaboration / implementation SDK that supports all members
of the project and reaches into all aspects of the of the development process.
Put simply, Reactive Fabric addresses complexity by visually modelling interaction as:

 Structured Inter-Processing-Element Notification.

The Reactive Fabric Software Technology White Paper is a separated into three parts:
• Part 1 - The Benefits of Reactive Fabric (relating to the whole development process).
• Part 2 - An Informal Introduction to Reactive Fabric Technology (expressed in non-technical concepts).
• Part 3 - Reactive Fabric Formalised (covers architectural specifics and technical formalisation).

This part focuses on the benefits of the technology. Part 2 is an informal discussion on background
concepts that can be read by anyone. It then follows onto technical formalisation in Part 3. The outlining
of Reactive Fabric's "what" (such as background concepts), is deferred to Part 2. If you are the type of
person who wants the "what" first, it may assist to read Part 2 first and then recommence here.

Reactive Fabric has applicable:

⚛

 As a Software Technology, it can be applied through the vertical stack (Server, Desktop, Mobile
App to SOC/IOT). It is perfectly suited for multi-platform services and multi-device systems.

1. Introduct ion

 1. Why Read This White Paper ?

 2. This White Paper is Factored Into Three Parts.

 3. Applicability of Reactive Fabric.

⚛

 As a Developmental Methodology, it naturally brings people together to collaborate, to share and
exchange ideas. It supports Agile across the board: incremental and iterative design-development-testing-
simulation.

⚛

 As a Software Design notation and vocabulary, it provides a concise, formalised design documentation
system that can be shared to the required level of detail. Intellectual Property can be protected while sharing
designs by selectively publishing-out only high level macro interactions as it is the micro-level interaction-
designs that really detail the operational "how".

Reactive Fabric is not applicable for strict real time control as it cannot guarantee strict timing.

Every organisation is an ecosystem in
itself. While the variations in these
ecosystems can be quite broad, here is
a simplified representation of the
vertical role stack in a typical
developmental organisational unit:
Using this organisational graph, lets
look at the benefits Reactive Fabric
provides for each scope-domain.

Product and high level Project Management are traditionally distant from technical details and so lack
visibility into what the product is actually doing under the hood. Reactive Fabric allows designs to be
available and comprehendible to all project levels. Product management no-longer have to accept
themselves as being foreign or peripheral to the (internal) operation of the product. Product management
can have up to date visibility of the design space on the level of detail relevant to them and have a
greater understanding of the challenges facing technical groups. The incremental design aspect also
offers a window into developmental progress.

Designs provide a medium (both as a visual and vocabulary base) to describe operational process and
the medium can be used to share designs with other interested parties. The medium also allows technical
staff to more fully expound on problems and solutions to management.

There are benefits derived from having the software project setup with:
• A "Design Space" which owned by the group,
• Produced as a team collaboration,
• and Made open to authorised parties for feedback.

Design becomes a shared, team experience, which challenges and feed-forwards designers, keeps
peripheral parties-of-interest informed of progress and associated problems but more importantly, these
benefits all flow back into the individual members to better self actualize their potential (and to grow in
their respective fields).
As an iterative design process, Reactive Fabric brings in a greater agility to the project. It synchronises
cycles of design with cycles of implementation and testing. It integrates into the fabric and heartbeat of
the development process to become a cycle of:

Design ⇒ Implement ⇒ Test ⇒ Assess and Repeat

1. Introduct ion (cont)

 2. Benefits In The Product Domain.

 1. Benefits: The Developmental Organisation Unit.

 3. Applicability of Reactive Fabric (Cont).

 3. Benefits In The Project Domain.

Reactive Fabric broadens the scope of expertise of development team members, fosters a deeper
appreciation of the whole system and developers no longer have to read bulk code to understand
the backing operational design. It speeds system comprehension, allowing incoming developers to
come up to speed more quickly and easily. Pre-design ahead of implementation allows ancillary
groups to give pre-implementation feedback and allows them to better synchronize with the project.

In Reactive Fabric, the implementation becomes a projection of the design in the Design Space
onto the Code Space. Some of the issues typically handled in the code space can be pre-envisioned
in the design space and handled there instead.
Designs can be shared with clients of the product so that they can better understand the process
behind the product Visual or API interface.

Working with Reactive Fabric designs at the developmental level requires a mind/paradigm shift.
Additional, high level operational representations come into play. Rather than thinking of in terms of
functions/object-classes/properties/traits/protocols you work with interactions. You visualise
operational process in terms of "Notification Data Types" and their flow through a Fabric of
"Notification Processors". You essentially "Design for Interaction" through the application of
primitive interactions and as these primitives are organised into patterns, in effect you design in
terms of "Interactional Patterns".
The Reactive Fabric development process is collaborative by nature as it operates on the "design
for interaction" principle. It forces developer/designers to collaborate on the evolution of focus
interactions. It provides a visual notation and a base vocabulary for people to describe and
discuss mutual interaction in their designs.
Interactional design opens to a wider scope of possibilities, such as:

• Pre-adaption to target environments (i.e. flexible configuration).
• Dynamic adaptive behaviour, reacting to changing environments.
• Interactional modelling of swarm (device) interactions.
• Modelling of exchanges, such as protocols and communication network interactions.

Reactive Fabric brings the developer/designer into a richer realm of expression which is ultimately
more engaging and rewarding.

Reactive Fabric naturally supports and moulds into testing and simulation. As designs are
decomposed into primitive interactions (of notifications), notifications become the prime mechanism
for test-data, test-data delivery and test-data validation. This is discussed more fully in Part 3.
Again, designs give operational insight to test-staff as to what they are in fact testing. It provides a
platform for how it is to be tested. It allows the test team to participate more deeply in the design of
the test process and the design of the testing framework.

2. Benefits (Cont)

 4. Benefits In The Development Process Domain.

 5. Benefits In The Testing and Simulation Domain

 3. Benefits In The Project Domain (Cont).

Reactive Fabric provides for system behaviour adaptation, which in turn can provide solutions for:
• Fail-over behaviour.
• Graceful handling of low internal and external resources.
• Performance thread load balancing.
• App energy management through strategies of notification throttling.

As systems become more interactionally complex, those teams that test and operate facilities require
more visibility into the product system operation. The Reactive Fabric design process assists
DevOps to discern system dependencies and understand system-operation cycles (such
configuration, adaptation, etc).

To convey what a design does actually look like, lets look at an example of:

A Conceptual, Macro-Level Design of a Mobile App.

The App's role is to allow a user to view their submitted Jobs on a hosted Net Server (here, the term
of "Job" is taken to be an abstract concept). The components of the design are comprised of:

• Notifications (i.e. messages that represent interaction).
• Elements (processors of those Notifications that denote the effecting of those interactions).

The design (given on the next page) conveys the essential character of the App's interaction of:

User ⇔ Job ⇔ Portal

This character, reflects the intrinsic interaction that:
• The User initiates interaction.
• Which in turn engages Job requests.
• That triggers Portal exchanges.
• and those generate back replies along the chain to reflect their results.

These interactions are modelled as Notifications between respective Elements and these
Elements perform their assigned processing roles on those Notifications.

Conceptual Designs are intended to convey essential, core interaction and withhold
detail. Functional Designs on the other hand, provide full detail are used by technical staff
to author implementations. So this particular Conceptual design below is devoid of detail
about Notifications, it just conveys the essential interactional character.

Note

2. Benefits (Cont)

 6. Benefits On App Life Cycle Management and The DevOps Level.

 1. Example Design Introduction.

3. Example Conceptual Design

In this particular design, as well as exhibiting the essential operational character just discussed, the
design also overlays some lifecycle characteristics, for a configuration cycle. During the configuration
cycle, specific models (such as the Job Model and the Portal API Model are deployed to their respective
hosting Elements for their execution).

Explaining the operation of this design, the App Supervisor element manages the whole system and so
is the causal initiator of system. It has a number of operational states (termed Scopes) for:

• App Start Up.
• App Configuration.
• Active Operation.

The system starts in the App Start Up scope during which the supervisor performs enviromental
identification (and possibly enviromental checks) and then auto-transitions to the Configuration scope. In
the Configuration scope, the App Supervisor configures the subordinate Elements and then auto-
transitions to the Active scope. It is here in this scope, that the App attains its full functional operational
state.
The App design also incorporates configurational flexibility to cater for varying environments. It can
configure for different Portal APIs by deploying the appropriate Portal API Model for the identifed
environment. It also can adjust for differences in the content or layout of views by providing environment
specific View Model(s). The App Supervisor is the actual store of these models and emits them as a
number of Configuration Notifications during the Configuration Scope.

3. Example Conceptual Design (Cont)

 2. Example Design Description.

The table below outlines the pros and cons of Reactive Fabric Technology.

Naturally decouples subsystems and provides
natural interfaces through the use of
notifications-element design. Reactive Fabric
Test Rigs bring structure and organisation to
testing.

Testing will typically be more complex
than a classical synchronous system, as
the Technology caters for asynchronous
applications.

Pro-s Con-s

Changes in system design incurs
modifications to test models that test the
system. These issues should also be
addressed when re-designing.

Supports incremental design. The inherent
modularity of the notification-element
design asists subsystem and expression
insertion, replacement, enhancement and
refinement.

Larger learning and tooling cycle.Provides long term benefits, discused earlier
in Part 1.

Larger learning and tooling cycle.Flexible enough to be introduced in piece
meal fashion.

Notification passing incurs processing
overhead. Options for handling these
overheads are discussed in Part 3. If
there are possible hard CPU resource
walls that may be hit, then there should
be initial simulations conducted to assess
what is options are viable.

Performance issues can be identified and
localised by analysing notification and
element performance with native SDK tracing,
performance analysis tools and debuggers.

Does not support strict Realtime control.Applicable to the full vertical stack from
Server, Application, App to SOC.

Reactive Fabric supports both comprehensive
and selective notification tracing. Tracing
provides high level assessment of notification
propagation and flow. Debuggers can be
employed for manual debugging of
notifications and element processing.

Scope is available for graceful failure design,
for adaption to changing environments and
varying resource levels.

As with any system, reliability depends on
testing. As Reactive Fabric addresses
complex systems, more extensive and
varied testing is most likely required.

The notification-element design is
intrinsically modular and decouples
dependencies.

Modularity

Robustness,
Reliability and

Failure Handling.

Traceability and
Debugability

Applicability

Scalability

Introducability to
existing projects

Introducability to
new projects.

Agility,
Extensibility and
Maintainability.

Aspect

Testability

Designs are open to perform system
configuration through the Notification
mechinism. Open to design adaptablity
through changes to element behaviour and
changes to topology.

Configurability
and

Adaptablity

Portability Currently only the Swift language is supported
in the SDK. The Kotlin language is on the
roadmap.

4. Technology Pros and Cons

 1. Technology Pros and Cons.

Platform System Application (for Designing and Modelling)

Hosted
Systems or
Containers

Linux Server Micro-Process behaviour.
Process/thread behaviour.
Inter-process protocols and interactions.
Testing and simulation.

Software
Application

Desktop
or Mobile

Application
(OSX, iOS,

Linux)

System behaviour.
Network interaction.
Attached device control & interaction (GPS, medical, etc).
Testing and simulation.

IOT Linux
Device

Device and edge behaviour.
Network and peer interaction.
Attached sub-device control & interaction.
Testing and simulation.

Swarm Collective swarm interaction.
Testing and simulation.

Electronic
Applicance

or Toy

Linux High-level system management.
Directing input data (to AI processing nodes).
Directing output results (from AI processing nodes).
Co-ordination of separate disparate compute units.

AI Hybrid
Systems

Linux High-level system management.
Directing input data (to AI processing nodes).
Directing output results (from AI processing nodes).
Co-ordination of separate disparate compute units.

Legacy
Hybrid

Systems

High-level system management.
Managing and directing input data and output data.
Co-ordination of separate disparate execution units.

Network
Interaction

Protocol design and modelling.
Network operation modelling.
Protocol and network operation testing and simulation.

5. Technology Appl icat ion

 1. Applicability Domains For Reactive Fabric.

This White Paper continues onto Part 2 (see links below), which goes onto to describe the
fundamental concepts behind the technology.

⚛

Reactive Fabric White Papers and Briefs:

• The Reactive Fabric White Paper, in three parts:
- Reactive Fabric White Paper Part 1 of 3.pdf
- Reactive Fabric White Paper Part 2 of 3.pdf
- Reactive Fabric White Paper Part 3 of 3.pdf

• For Desktop and Mobile Apps:
- Reactive Fabric For Desktop and Mobile Product Application.pdf

• For IOT:
Reactive Fabric For IOT Product Application.pdf

⚛

Website pages:
• Originware site: originware.com
• The Reactive Fabric web page: originware.com/reactivefabric.html

Apps designed on Reactive Fabric principles:

⚛

 The Dronenaut iOS App on the App Store The Dronenaut App
(employs the older Reactive Patterns SDK)

⚛

 The Reactive Fabric Sample App: Reactive Fabric Sample Kit For iOS

(employs the Reactive Fabric SDK)

Please direct questions and requests for more information to:

Terry Stillone (terry@originware.com)

6. More Information

 1. Further, White Paper Reading.

 2. For More Information.

 3. Reactive Fabric Samples.

 4. Contact.

https://www.originware.com/doc/Reactive%20Fabric%20White%20Paper%20Part%201%20of%203.pdf
https://www.originware.com/doc/Reactive%20Fabric%20White%20Paper%20Part%202%20of%203.pdf
https://www.originware.com/doc/Reactive%20Fabric%20White%20Paper%20Part%203%20of%203.pdf
https://www.originware.com/doc/Reactive%20Fabric%20For%20Desktop%20and%20Mobile%20Product%20Application.pdf
https://www.originware.com/doc/Reactive%20Fabric%20For%20IOT%20Product%20Application.pdf
https://www.originware.com
https://www.originware.com/reactivefabric.html
https://www.originware.com/dronenaut/
https://www.originware.com/rfsamplekit.html
mailto:terry@originware.com

