
Author: Terry Stillone (terry@originware.com)

Web: www.originware.com

Version: 1.0

February 2019

For IOT

SDK For iOS, OSX (and coming for Linux)

Product Application Brief

Draft

mailto:terry@originware.com
http://www.originware.com

This document discusses Reactive Fabric Technology in reference and applicability to the IOT
domain. You do need to understand the underlying concepts of Reactive Fabric and so you are
advised to read the companion Reactive Fabric White-paper first.

IOT has realised an expansive growth phase and as a follow on consequence, requirements
previously on the broad horizon have been drawn to the door step. More intricate peer interactions,
deeper, more varied online dependencies, edge boundaries and correspondingly expansive
operational complexity. Reactive Fabric brings advances in Software Technology normally available
to the more sophisticated desktop base to the SOC platform, bringing enhanced capability while
simplifying design and development.
The IOT concept is founded upon premise of the value of local "interchange" (interaction between
devices). Reactive Fabric is all about the design of interaction and interchange. It structures design
into a hierarchy of Levels Of Detail (LOD) that represent various levels of interchange. From macro
LOD interaction across mass devices down to the micro LOD controlling a simple sensor. It
organises the design of interaction into a manageable visual medium. As a common design process,
it brings projects and groups together to collaborate, iteratively evolve and share their software
design and design process. The Reactive Fabric design methodology brings people together, gives
them a human language base to describe design and in turn, unburdens their (design) cognitive
load, so as to ponder deeper possibilities.
Reactive Fabric unifies in the total dimensionality of the development process. As a common
Software Architecture that applies to the whole vertical platform stack, It unifies the total software
base from SOC to Mobile App, to Desktop program and even to the Server level. On a group
process level, it brings members together to design together. It encourages general design and
developmental interchange between all interested parties (not just group members).

Nature employs messaging as a design principle: some
component generates encapsulated message quanta, which in
turn follows a transport path and ultimately is consumed by a
receiving component. A good example of this are chemical
messengers in organisms, sent through arterial pathways to be
acted upon by target organs. Here is an Adrenal gland example in
diagram form.
Reactive Fabric takes that natural design principle and applies it
to software interaction. Here RfElements produce, consume and
operate on message quanta (called RfNotifications). In the diagram analog, an RfElement (of type
RfSource) corresponds to the Adrenal gland secreting Adrenaline (the analog of the RfNotification
data quanta) which then is transported to separate target RfElements (of type RfCollector) in this
case the heart, lungs and liver.
An RfNotification is an event data-quanta. Examples include: a network data packet with the packet
data, a heart rate reading with the reading timestamp and the sensor ID that took the measurement,
a peer discovery event with the peer identity, a peer Bluetooth Descriptor value change event with
the descriptor identity together with the before and after values.
Reactive Fabric design describes operation in terms of processing elements (i.e. RfElements),
RfNotifications (the messengers) and their transport paths between those elements. The connected
graph of RfElements forms the topology of the interactions and this structured organisation embodies
the "Fabric" which encapsulates the whole system operation.

1. Introduct ion

 2. The Reactive Fabric Technology Platform For IOT

 3. Reactive Fabric as a Design Medium.

 1. Required Background Reading.

https://www.originware.com/doc/Reactive%20Fabric%20Whitepaper.pdf

Designs describe interaction in the abstract. The space of the design is not confined. It can focus
down to an LOD of simple controller of a embedded device, it can go to the group interaction of a
device/peer/server collective, it can depict a whole network, it can go beyond. The LOD of designs
are relative.
The design, also only needs to depict what is relevant for that LOD. High level LODs tend to be
conceptual in the beginning and then evolve to more practicality. A Design must balance detail with
relevance. Too much detail, too much complexity reflect an immature design. Simplicity and elegance
are the goals.
Below is a concept, high level LOD design of a lighting system with a master device and small slave
devices. The master device includes a mini web-server to act as a user interface. The design implies
wireless connectivity between the master device and slave devices but there is not relevant for a high
level LOD and would be depicted in lower level designs. The Web Server also has much more
internal detail and this would be depicted in the low level LOD designs.

Designs evolve together with their co-dependent backing implementation. In the same way
implementations go through iterations, so do designs. They grow, mature and refine along side their
complimentary implementation. For example, the Web Server low level design would begin first with
just a service initialisation/finalisation design, then incorporate net connectivity with HTTP GET
protocol handling and then onto POST/PUT protocol handling and so on.

Low level LOD designs tend to detail more of the "how" whereas high level designs describe more of
the "what" (of the interactions).

 1. Reactive Fabric Design and Implementation Iteration Cycles.

2. IOT Device Design

The interaction capability unlocked by Reactive Fabric also follows over onto greater simulation
and testing capability. The multi-device nature of IOT adds even more complexity to interaction mix
when device-collective testing and simulation becomes into play.

Reactive Fabric provides for testing at a number of scopes:

• Unit Testing of individual RfElements.
• Behavioural Testing of single systems (single devices).
• Collective Behavioural Testing (device collectives).

Typically, test rigs are authored to generate input RfNotifications to target testables and authored
RfCollectors or RfServices to consume the resultant products (notifications) and verify their
legitimacy.

Let's use an example design as a reference for testing. Below is a lower level (in device) design
example for an edge router. It uses Bluetooth to scan for known peripherals in the locality, extracts
their data (in the form of Bluetooth descriptors) and then logs the data to a net service when those
values are found to change.

It comprises of two subsystems, one for scanning Bluetooth devices and the other for logging. The
Supervisor in notified of changed descriptor values and then emits to the Logging Subsystem for
the data logging.

2. Simulat ion and Test ing

 1. General Testing and Simulation.

On the simplest level, RfElements can be unit tested in a simple rig to organise the test data into
test quanta (RfNotifications) and deliver that to a notification generator/matcher RfElement. Here is
an example test rig for exercising the Descriptor tracker in our base design:

In this scenario we again have to generate input and verify output RfNotifications but it requires
more coordination between more numerous generators and verifiers. In our base example the
inputs and outputs are network interfaces so, there are two main avenues of test rig architectures:

1. Pure in-device testing architecture which would feed and verify to/from the client interfaces.
2. Multi-device testing architecture which would simulate the networks themselves and lead

onto the capability of multi-device testing and simulation.

We will follow the more
extensive operation option (2)
and incorporate network
design but only cover the IP
Network. The IP Network
design is given here and rather
than running read and write
requests through the whole
Network we will use a Data
Channel design. The Network
open requests reply back with
data channels which in turn
perform data interchange.

The Test Rig supervisor will have the
responsibility of creating the data
channels, populating Web Content within
them and installing the data channel into
the TCP Server RfElement.

2. Simulat ion and Test ing

 1. Unit Testing (Single RfElements).

 2. System Behavioural Testing.

Here is the Test Rig design:

The Test Rig emits (to the Test Supervisor) the test data comprising:
• The collection of TCP Servers with their data channels.
• The collection of Bluetooth peripherals with their descriptors.
• The Bluetooth network sequencer which drives the bluetooth events (discovery, descriptor

change, etc).

The Test Supervisor in turn configures the networks from the supplied test data. The test is run, the
network events are recorded and the cycle completes when the all the IP hosts close (as observed
through back replies from the networks). The sequence of recorded events are verified and the
data channels are verified. The test result is emitted back to the Test Rig.

For more fine grained testing, the data channels could record their event activity and verification
could then use that rather than just their resultant state. For testing temporal variations, the
bluetooth event sequencer can be perturbed and it would then be expected to generate the
expected whole system events used for verification.

This is a single test target design, the Test Supervisor creates a single the target Router Device.
For a multi-device test, the Test Rig test data would include the target devices and the Test
Supervisor would in turn construct all of them.

2. Simulat ion and Test ing

 2. System Behavioural Testing (cont).

Sequence diagrams (also called marble diagrams) are useful for conveying the sequential order of
notifications and replies in designs. Here is the sequence for the previous Test Rig:

Of course, green arrows are request notifications and replies are in red.

2. Simulat ion and Test ing

 3. Sequence Diagramming

Reactive Fabric re-scopes capability in the development process. It re-scopes what is possible and
how that is done. It precipitates through greater group and personal process to visualise design,
express in design, collaborate through design and explore with design. Project members grow in
themselves in the space it provides.

The flow on permeates into the individuals development process, the group development process, the
quality, flexibility and testability of the code base and assurance in the operation of the code. More
specifically:

• The individual development process is enhanced with scope to do more at less personal
cognitive burden (the individual does not need to pour over tens of thousands of lines of code in order
to understand system operation). The individual is given greater scope to express and demonstrate
the trade offs of one design over another.

• The group development process is sped up with more effective, more frequent and tighter
collaboration cycles.

Reactive Fabric relies on and comes at the cost of the group shifting to a different mind set, shifting
into the design space, looking at the problem in a different way, letting go of old safety blankets (e.g.
"I write large complex systems, design just slows me down and I don't have time for it."). It does take
acclamation to start breathing, thinking and working in the design space. The net result is benefit but
people may require time to integrate it into themselves, into their being where their creation springs
from.

Good design should also equate to testability and testability flows back into good design. The easier it
is to design testing systems the more assurance there is in the design.

Reactive Fabric brings the design space into testing and simulation domain, so that development and
testing are codependent threads. The benefits of Reactive Fabric to development also become the
benefits to testing. Testing engineers get see the design of what they are testing. They couple into the
design of test systems.

Please check the:

• Originware site: www.originware.com
• The Reactive Fabric web page: www.originware.com/reactivefabric.html
• The Reactive Fabric white paper: www.originware.com/doc/Reactive%20Fabric%20Whitepaper.pdf

For direct questions and information contact: Terry Stillone (terry@originware.com)

3.Benefits of React ive Fabr ic

 1. Benefits to Development.

 2. Benefits to Testing and Simulation.

 3. For More Information.

http://www.originware.com
http://www.originware.com/reactivefabric.html
http://www.originware.com/doc/Reactive%20Fabric%20Whitepaper.pdf
mailto:terry@originware.com

